3D Brain MRI GAN-Based Synthesis Conditioned on Partial Volume Maps

  • Conference paper
  • First Online:
Simulation and Synthesis in Medical Imaging (SASHIMI 2020)

Abstract

In this paper, we propose a framework for synthesising 3D brain T1-weighted (T1-w) MRI images from Partial Volume (PV) maps for the purpose of generating synthetic MRI volumes with more accurate tissue borders. Synthetic MRIs are required to enlarge and enrich very limited data sets available for training of brain segmentation and related models. In comparison to current state-of-the-art methods, our framework exploits PV-map properties in order to guide a Generative Adversarial Network (GAN) towards the generation of more accurate and realistic synthetic MRI volumes. We demonstrate that conditioning a GAN on PV-maps instead of Binary-maps results in 58.96% more accurate tissue borders in synthetic MRIs. Furthermore, our results indicate an improvement in the representation of the Deep Gray Matter region in synthetic MRI volumes. Finally, we show that fine changes introduced into PV-maps are reflected in the synthetic images, while preserving accurate tissue borders, thus enabling better control during the data synthesis of novel synthetic MRI volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Data used in the preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other biological markers, and clinical and neuropsychological assessment can be combined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information, see www.adni-info.org.

References

  1. Acosta, O., et al.: Automated voxel-based 3D cortical thickness measurement in a combined Lagrangian-Eulerian PDE approach using partial volume maps. Med. Image Anal. 13(5), 730–743 (2009)

    Article  Google Scholar 

  2. Bai, W., et al.: Semi-supervised learning for network-based cardiac MR image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

    Chapter  Google Scholar 

  3. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: An unsupervised learning model for deformable medical image registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9252–9260 (2018)

    Google Scholar 

  4. Ballester, M.Á.G., Zisserman, A.P., Brady, M.: Estimation of the partial volume effect in MRI. Med. Image Anal. 6(4), 389–405 (2002)

    Article  Google Scholar 

  5. Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., Greenspan, H.: Synthetic data augmentation using GAN for improved liver lesion classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 289–293. IEEE (2018)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Han, C., et al.: Combining noise-to-image and image-to-image GANs: Brain MR image augmentation for tumor detection. IEEE Access 7, 156966–156977 (2019)

    Article  Google Scholar 

  8. Hu, Y., et al.: Label-driven weakly-supervised learning for multimodal deformable image registration. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1070–1074. IEEE (2018)

    Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  10. Jack Jr., C.R., et al.: The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. J. Magn. Reson. Imaging Off. J. Int. Soc. Magn. Reson. Med. 27(4), 685–691 (2008)

    Google Scholar 

  11. Kwon, G., Han, C., Kim, D.: Generation of 3D brain MRI using auto-encoding generative adversarial networks. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 118–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_14

    Chapter  Google Scholar 

  12. Lee, J.G., et al.: Deep learning in medical imaging: general overview. Korean J. Radiol. 18(4), 570–584 (2017)

    Article  Google Scholar 

  13. Lenchik, L., et al.: Automated segmentation of tissues using CT and MRI: a systematic review. Acad. Radiol. 26(12), 1695–1706 (2019)

    Article  Google Scholar 

  14. Li, H., Fan, Y.: Non-rigid image registration using self-supervised fully convolutional networks without training data. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1075–1078. IEEE (2018)

    Google Scholar 

  15. Mahjourian, R., Wicke, M., Angelova, A.: Unsupervised learning of depth and ego-motion from monocular video using 3D geometric constraints. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5667–5675 (2018)

    Google Scholar 

  16. Mirza, M., Osindero, S.: Conditional generative adversarial nets. ar**v preprint ar**v:1411.1784 (2014)

  17. Pombo, G., Gray, R., Varsavsky, T., Ashburner, J., Nachev, P.: Bayesian volumetric autoregressive generative models for better semisupervised learning. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11767, pp. 429–437. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32251-9_47

    Chapter  Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  20. Roy, A.G., Conjeti, S., Navab, N., Wachinger, C., Initiative, A.D.N., et al.: QuickNAT: a fully convolutional network for quick and accurate segmentation of neuroanatomy. NeuroImage 186, 713–727 (2019)

    Article  Google Scholar 

  21. Santa Cruz, R., Fernando, B., Cherian, A., Gould, S.: DeepPermNet: visual permutation learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3949–3957 (2017)

    Google Scholar 

  22. Shin, H.-C., et al.: Medical image synthesis for data augmentation and anonymization using generative adversarial networks. In: Gooya, A., Goksel, O., Oguz, I., Burgos, N. (eds.) SASHIMI 2018. LNCS, vol. 11037, pp. 1–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00536-8_1

    Chapter  Google Scholar 

  23. Taylor, L., Nitschke, G.: Improving deep learning using generic data augmentation. ar**v preprint ar**v:1708.06020 (2017)

  24. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based bias field correction of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 885–896 (1999)

    Article  Google Scholar 

  25. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)

    Article  Google Scholar 

  26. Weiner, M.W., et al.: The Alzheimer’s disease neuroimaging initiative 3: continued innovation for clinical trial improvement. Alzheimer’s Dement. 13(5), 561–571 (2017)

    Article  Google Scholar 

  27. Xu, Y., Zhu, J.Y., Eric, I., Chang, C., Lai, M., Tu, Z.: Weakly supervised histopathology cancer image segmentation and classification. Med. Image Anal. 18(3), 591–604 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filip Rusak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rusak, F. et al. (2020). 3D Brain MRI GAN-Based Synthesis Conditioned on Partial Volume Maps. In: Burgos, N., Svoboda, D., Wolterink, J.M., Zhao, C. (eds) Simulation and Synthesis in Medical Imaging. SASHIMI 2020. Lecture Notes in Computer Science(), vol 12417. Springer, Cham. https://doi.org/10.1007/978-3-030-59520-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59520-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59519-7

  • Online ISBN: 978-3-030-59520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation