Extreme-SAX: Extreme Points Based Symbolic Representation for Time Series Classification

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12393))

Included in the following conference series:

Abstract

Time series classification is an important problem in data mining with several applications in different domains. Because time series data are usually high dimensional, dimensionality reduction techniques have been proposed as an efficient approach to lower their dimensionality. One of the most popular dimensionality reduction techniques of time series data is the Symbolic Aggregate Approximation (SAX), which is inspired by algorithms from text mining and bioinformatics. SAX is simple and efficient because it uses precomputed distances. The disadvantage of SAX is its inability to accurately represent important points in the time series. In this paper we present Extreme-SAX (E-SAX), which uses only the extreme points of each segment to represent the time series. E-SAX has exactly the same simplicity and efficiency of the original SAX, yet it gives better results in time series classification than the original SAX, as we show in extensive experiments on a variety of time series datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31, 606–660 (2017)

    Article  MathSciNet  Google Scholar 

  2. Baydogan, M., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 2796–2802 (2013)

    Article  Google Scholar 

  3. Bramer, M.: Principles of Data Mining. Springer, London (2007). https://doi.org/10.1007/978-1-84628-766-4

    Book  MATH  Google Scholar 

  4. Chen, Y., et al.: The UCR time series classification archive (2015). www.cs.ucr.edu/~eamonn/time_series_data

  5. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and mining of time series. In: Proceedings of the 34th VLDB (2008)

    Google Scholar 

  6. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Adversarial attacks on deep neural networks for time series classification. In: Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July (2019)

    Google Scholar 

  7. Hatami, N., Gavet, Y., Debayle, J.: Bag of recurrence patterns representation for time-series classification. Pattern Anal. Appl. 22, 877–887 (2019)

    Article  MathSciNet  Google Scholar 

  8. Karim, F., Majumdar, S., Darabi, H., Chen, S.: LSTM fully convolutional networks for time series classification. IEEE Access 1–7 (2017)

    Google Scholar 

  9. Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra: Dimensionality reduction for fast similarity search in large time series databases. J. Know. Inform. Sys. (2000)

    Google Scholar 

  10. Keogh, E., Chakrabarti, K., Pazzani, M., Mehrotra, S.: Locally adaptive dimensionality reduction for similarity search in large time series databases. In: SIGMOD, pp. 151–162 (2001)

    Google Scholar 

  11. Lin, J., Keogh, E., Lonardi, S., Chiu, B.Y.: A symbolic representation of time series, with implications for streaming algorithms. DMKD 2003, 2–11 (2003)

    Article  Google Scholar 

  12. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2) (2007)

    Google Scholar 

  13. Lkhagava, B., Suzuki, Y., Kawagoe, K.: Extended SAX: extension of symbolic aggregate approximation for financial time series data representation. In: Proceedings of the Data Engineering Workshop 2006, 2006, 4A0-8 (2006)

    Google Scholar 

  14. Muhammad Fuad, M.M.: Differential evolution versus genetic algorithms: towards symbolic aggregate approximation of non-normalized time series. Sixteenth International Database Engineering & Applications Symposium– IDEAS’12, Prague, Czech Republic,8–10 August, 2012. Published by BytePress/ACM (2012)

    Google Scholar 

  15. Muhammad Fuad, M.M.: Genetic algorithms-based symbolic aggregate approximation. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2012. LNCS, vol. 7448, pp. 105–116. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32584-7_9

    Chapter  Google Scholar 

  16. Ratanamahatana, C., Keogh, E.: Making time-series classification more accurate using learned constraints. In: Proceedings of the SIAM International Conference on Data Mining, pp. 11–22 (2004)

    Google Scholar 

  17. Ratanamahatana, C., Keogh, E., Bagnall, A.J., Lonardi, S.: A novel bit level time series representation with implication of similarity search and clustering. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 771–777. Springer, Heidelberg (2005). https://doi.org/10.1007/11430919_90

    Chapter  Google Scholar 

  18. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep neural networks: a strong baseline. In: Proceedings of the International Joint Conference on Neural Networking (IJCNN), May 2017, pp. 1578–1585 (2017)

    Google Scholar 

  19. Yi, B.K., Faloutsos, C.: Fast time sequence indexing for arbitrary Lp norms. In: Proceedings of the 26th International Conference on Very Large Databases, Cairo, Egypt (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Marwan Muhammad Fuad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muhammad Fuad, M.M. (2020). Extreme-SAX: Extreme Points Based Symbolic Representation for Time Series Classification. In: Song, M., Song, IY., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2020. Lecture Notes in Computer Science(), vol 12393. Springer, Cham. https://doi.org/10.1007/978-3-030-59065-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59065-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59064-2

  • Online ISBN: 978-3-030-59065-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation