Catalytic Oxidation of Volatile Organic Compounds over Porous Manganese Oxides Prepared via Sol-Gel Method

  • Chapter
  • First Online:
Nanostructured Catalysts for Environmental Applications

Abstract

A set of transition metal oxides was prepared via a sol-gel synthesis using different metal (Mn, Cu, and Fe) nitrates to ensure a proper manganese to metal ratio in the final product. Specifically, three pure metal oxides (Mn2O3, CuO, and Fe2O3) and mixed oxides (MnCu15, MnFe15, and MnCu7.5Fe7.5) were synthesized and characterized by means of XRD, N2-physisorption at −196 °C, H2-TPR, FESEM, and XPS techniques. The catalysts were tested for the catalytic oxidation of volatile organic compounds (VOCs) using two probe molecules, namely ethylene and propylene. As a result, the best reaction rates were observed for the MnCu7.5Fe7.5 powder sample and were attributed to the synergistic interactions occurring between the Mn, Cu, and Fe species in the crystalline structure. Similarly, Mn2O3 showed a good catalytic performance. The excellent catalytic activity of the oxides was correlated with the high amount of reactive chemisorbed oxygen species located on the surface, since these species are useful for the oxidation of VOCs. As well, the improvement of the catalytic activity corresponded to the enhanced reducibility of the catalysts at lower temperatures (i.e., better lattice-oxygen mobility) observed during the temperature-programmed reduction studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Koppmann, Volatile Organic Compounds in the Atmosphere (Blackwell, Hoboken, 2007)

    Book  Google Scholar 

  2. R. Atkinson, J. Arey, Atmospheric degradation of volatile organic compounds. Chem. Rev. 103, 4605–4638 (2003). https://doi.org/10.1021/cr0206420

    Article  CAS  Google Scholar 

  3. B.J. Finlayson-Pitts, J.N. Pitts Jr., Tropospheric air pollution: ozone, airborne toxics, polycyclic aromatic hydrocarbons, and particles. Science 276(5315), 1045–1051 (1979)

    Article  Google Scholar 

  4. N. Ramírez, A. Cuadras, E. Rovira, et al., Chronic risk assessment of exposure to volatile organic compounds in the atmosphere near the largest Mediterranean industrial site. Environ. Int. 39, 200–209 (2012). https://doi.org/10.1016/J.ENVINT.2011.11.002

    Article  Google Scholar 

  5. U.S. Environmental Protection Agency. Office of Air and Radiation. Control Techniques for Volatile Organic Compound Emissions from Stationary Sources. (1992)

    Google Scholar 

  6. D. Duprez, F. Cavani, Handbook of Advanced Methods and Processes in Oxidation Catalysis: From Laboratory to Industry (Imperial College Press, London, 2014)

    Book  Google Scholar 

  7. E.C. Moretti, American Institute of Chemical Engineers. Center for Waste Reduction Technologies, Practical Solutions for Reducing Volatile Organic Compounds and Hazardous Air Pollutants (Center for Waste Reduction Technologies, American Institute of Chemical Engineers, New York, NY, 2001)

    Google Scholar 

  8. L.F. Liotta, Catalytic oxidation of volatile organic compounds on supported noble metals. Appl. Catal. B Environ. 100, 403–412 (2010)

    Article  CAS  Google Scholar 

  9. H. Huang, Y. Xu, Q. Feng, D.Y.C. Leung, Low temperature catalytic oxidation of volatile organic compounds: a review. Cat. Sci. Technol. 5, 2649–2669 (2015)

    Article  CAS  Google Scholar 

  10. M.S. Kamal, S.A. Razzak, M.M. Hossain, Catalytic oxidation of volatile organic compounds (VOCs)—a review. Atmos. Environ. 140, 117–134 (2016) https://doi.org/10.1016/J.ATMOSENV.2016.05.031

    Article  CAS  Google Scholar 

  11. H.C. Genuino, S. Dharmarathna, E.C. Njagi, et al., Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. (2012). https://doi.org/10.1021/jp301342f

  12. D.A. Aguilera, A. Perez, R. Molina, S. Moreno, Cu-Mn and Co-Mn catalysts synthesized from hydrotalcites and their use in the oxidation of VOCs. Appl. Catal. B Environ. 104, 144–150 (2011). https://doi.org/10.1016/j.apcatb.2011.02.019

    Article  CAS  Google Scholar 

  13. M. Piumetti, S. Bensaid, T. Andana, et al., Cerium-copper oxides prepared by solution combustion synthesis for total oxidation reactions: from powder catalysts to structured reactors. Appl. Catal. B Environ. 205, 455–468 (2017). https://doi.org/10.1016/j.apcatb.2016.12.054

    Article  CAS  Google Scholar 

  14. D. Delimaris, T. Ioannides, VOC oxidation over MnOx-CeO2 catalysts prepared by a combustion method. Appl. Catal. B Environ. 84, 303–312 (2008). https://doi.org/10.1016/j.apcatb.2009.02.003

    Article  CAS  Google Scholar 

  15. D. Delimaris, T. Ioannides, VOC oxidation over CuO-CeO2 catalysts prepared by a combustion method. Appl. Catal. B Environ. 89, 295–302 (2009). https://doi.org/10.1016/j.apcatb.2009.02.003

    Article  CAS  Google Scholar 

  16. H. Lu, X. Kong, H. Huang, et al., Cu–Mn–Ce ternary mixed-oxide catalysts for catalytic combustion of toluene. J. Environ. Sci. 32, 102–107 (2015). https://doi.org/10.1016/J.JES.2014.11.015

    Article  CAS  Google Scholar 

  17. M. Piumetti, D. Fino, N. Russo, Mesoporous manganese oxides prepared by solution combustion synthesis as catalysts for the total oxidation of VOCs. Appl. Catal. B Environ. 163, 277–287 (2015). https://doi.org/10.1016/j.apcatb.2014.08.012

    Article  CAS  Google Scholar 

  18. M.J. Marin Figueredo, T. Andana, S. Bensaid, et al., Cerium–copper–manganese oxides synthesized via solution combustion synthesis (SCS) for total oxidation of VOCs. Catal. Letters. 150, 1821–1840 (2020). https://doi.org/10.1007/s10562-019-03094-x

    Article  CAS  Google Scholar 

  19. W.M. Haynes, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data, 95th edn. (CRC Press, Boca Raton, 2014)

    Book  Google Scholar 

  20. C. Julien, M. Massot, R. Baddour-Hadjean, et al., Raman spectra of birnessite manganese dioxides. Solid State Ionics 159, 345–356 (2003). https://doi.org/10.1016/S0167-2738(03)00035-3

    Article  CAS  Google Scholar 

  21. S. Bach, M. Henry, N. Baffier, J. Livage, Sol-gel synthesis of manganese oxides. J. Solid State Chem. 88, 325–333 (1990). https://doi.org/10.1016/0022-4596(90)90228-P

    Article  CAS  Google Scholar 

  22. X. Tang, Y. Li, X. Huang, et al., MnOx-CeO2 mixed oxide catalysts for complete oxidation of formaldehyde: effect of preparation method and calcination temperature. Appl. Catal. B Environ. 62, 265–273 (2006). https://doi.org/10.1016/j.apcatb.2005.08.004

    Article  CAS  Google Scholar 

  23. A. Pintar, J. Batista, S. Hočevar, TPR, TPO, and TPD examinations of Cu0.15Ce0.85O 2-y mixed oxides prepared by co-precipitation, by the sol-gel peroxide route, and by citric acid-assisted synthesis. J. Colloid Interface Sci. 285, 218–231 (2005). https://doi.org/10.1016/j.jcis.2004.11.049

    Article  CAS  Google Scholar 

  24. S.E. Shirsath, D. Wang, S.S. Jadhav, et al., Ferrites Obtained by Sol–Gel Method, in Handbook of Sol-Gel Science and Technology, (Springer International Publishing, New York, 2018), pp. 1–41

    Google Scholar 

  25. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystallogr. Sect. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  Google Scholar 

  26. F. Kapteijn, L. Singoredjo, A. Andreini, J.A. Moulijn, Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia. Appl. Catal. B Environ. 3, 173–189 (1994). https://doi.org/10.1016/0926-3373(93)E0034-9

    Article  CAS  Google Scholar 

  27. G. Avgouropoulos, T. Ioannides, H. Matralis, Influence of the preparation method on the performance of CuO-CeO 2 catalysts for the selective oxidation of CO. Appl. Catal. B Environ. 56, 87–93 (2005). https://doi.org/10.1016/j.apcatb.2004.07.017

    Article  CAS  Google Scholar 

  28. G. Munteanu, L. Ilieva, D. Andreeva, Kinetic parameters obtained from TPR data for α-Fe2O3 and Au/α-Fe2O3 systems. Thermochim. Acta 291, 171–177 (1997). https://doi.org/10.1016/S0040-6031(96)03097-3

    Article  CAS  Google Scholar 

  29. J. Zieliński, I. Zglinicka, L. Znak, Z. Kaszkur, Reduction of Fe2O3 with hydrogen. Appl. Catal. A Gen. 381, 191–196 (2010). https://doi.org/10.1016/j.apcata.2010.04.003

    Article  CAS  Google Scholar 

  30. A. Wöllner, F. Lange, H. Schmelz, H. Knözinger, Characterization of mixed copper-manganese oxides supported on titania catalysts for selective oxidation of ammonia. Appl. Catal. A Gen. 94, 181–203 (1993). https://doi.org/10.1016/0926-860X(93)85007-C

    Article  Google Scholar 

  31. T. Li, Y. Yang, C. Zhang, et al., Effect of manganese incorporation manner on an iron-based catalyst for Fischer-Tropsch synthesis. J. Nat. Gas Chem. 16, 244–251 (2007). https://doi.org/10.1016/S1003-9953(07)60055-3

    Article  CAS  Google Scholar 

  32. I.R. Leith, M.G. Howden, Temperature-programmed reduction of mixed iron-manganese oxide catalysts in hydrogen and carbon monoxide. Appl. Catal. 37, 75–92 (1988). https://doi.org/10.1016/S0166-9834(00)80752-6

    Article  CAS  Google Scholar 

  33. L. Kundakovic, M. Flytzani-Stephanopoulos, Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl. Catal. A Gen. 171, 13–29 (1998). https://doi.org/10.1016/S0926-860X(98)00056-8

    Article  CAS  Google Scholar 

  34. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, 1992)

    Google Scholar 

  35. V.P. Santos, M.F.R. Pereira, J.J.M. Órfão, J.L. Figueiredo, The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Appl. Catal. B Environ. 99, 353–363 (2010). https://doi.org/10.1016/j.apcatb.2010.07.007

    Article  CAS  Google Scholar 

  36. S.C. Kim, W.G. Shim, Catalytic combustion of VOCs over a series of manganese oxide catalysts. Appl. Catal. B Environ. 98, 180–185 (2010). https://doi.org/10.1016/j.apcatb.2010.05.027

    Article  CAS  Google Scholar 

  37. M.C. Biesinger, B.P. Payne, A.P. Grosvenor, et al., Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  38. M.C. Biesinger, L.W.M. Lau, A.R. Gerson, R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 257, 887–898 (2010). https://doi.org/10.1016/j.apsusc.2010.10.051

    Article  CAS  Google Scholar 

  39. W. Liu, M. Flytzani-Stephanopoulos, Total oxidation of carbon monoxide and methane over transition metal-fluorite oxide composite catalysts.pdf. J. Catal. 153, 317–332 (1995)

    Article  CAS  Google Scholar 

  40. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe 2+ and Fe 3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008). https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  41. M. Piumetti, N. Russo, Notes on Catalysis for Environment and Energy (CLUT-Politecnico di Torino, Torino, 2017)

    Google Scholar 

  42. E.C. Njagi, H.C. Genuino, C.K. King, et al., Applied catalysis A: general catalytic oxidation of ethylene at low temperatures using porous copper manganese oxides. Appl. Catal. A Gen. 421-422, 154–160 (2012). https://doi.org/10.1016/j.apcata.2012.02.011

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Piumetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marin Figueredo, M.J., Piumetti, M., Bensaid, S., Fino, D., Nunzio, R. (2021). Catalytic Oxidation of Volatile Organic Compounds over Porous Manganese Oxides Prepared via Sol-Gel Method. In: Piumetti, M., Bensaid, S. (eds) Nanostructured Catalysts for Environmental Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-58934-9_2

Download citation

Publish with us

Policies and ethics

Navigation