The Use of Ecological Networks as Tools for Understanding and Conserving Marine Biodiversity

  • Chapter
  • First Online:
Marine Coastal Ecosystems Modelling and Conservation

Abstract

Anthropogenic pressures threaten marine biodiversity at multiple scales and challenge scientists to understand and mitigate human impacts on marine biodiversity. Facing such a challenge, recent approaches that bridge community ecology and conservation planning can broaden the theoretical foundations of strategies aimed to ensure the resilience and functional diversity of marine food webs. We here summarize metrics used to describe patterns of ecological interactions that account for the overall community architecture, such as nestedness and modularity. In addition, we discuss approaches to characterize species topological roles within food webs in order to identify sets of interacting species that act as the backbone of marine biodiversity and ecosystem functions. We argue that combining empirical data and dynamic network modeling is key to foster the integrative understanding of ecological, evolutionary, and anthropogenic processes sha** marine food webs, which requires theoretical ecologists and practitioners to work together in long-term, system-level strategies to conserve marine biodiversity and improve the sustainability of fisheries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abarca-Arenas, L. G., Franco-López, J., Peterson, M. S., Brown-Peterson, N. J., & Valero-Pacheco, E. (2007). Sociometric analysis of the role of penaeids in the continental shelf food web off Veracruz, Mexico based on by-catch. Fisheries Research, 87(1), 46–57.

    Article  Google Scholar 

  • Acheson, J. M. (1988). Patterns of gear changes in the Marine fishing industry: Some implications for management. Marine Anthropological Studies, 1, 49–65.

    Google Scholar 

  • Allesina, S., Bodini, A., & Bondavalli, C. (2006). Secondary extinctions in ecological networks: Bottlenecks unveiled. Ecological Modelling, 194(1-3), 150–161.

    Article  Google Scholar 

  • Allesina, S., & Tang, S. (2015). The stability–complexity relationship at age 40: A random matrix perspective. Population Ecology, 57(1), 63–75.

    Article  Google Scholar 

  • Barabási, A. L. (2016). Network science. Cambridge University Press.

    Google Scholar 

  • Barraclough, T. G. (2015). How do species interactions affect evolutionary dynamics across whole communities? Annual Review of Ecology, Evolution, and Systematics, 46, 25–48.

    Article  Google Scholar 

  • Bascompte, J., & Jordano, P.. (2014). Mutualistic networks. Monographs in population biology series, no. 53. Princeton University Press, Princeton, 216 pp.

    Google Scholar 

  • Bascompte, J., Melián, C. J., & Sala, E. (2005). Interaction strength combinations and the overfishing of a marine food web. Proceedings of the National Academy of Sciences of the United States of America, 102(15), 5443–5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum, J. K., & Worm, B. (2009). Cascading top-down effects of changing oceanic predator abundances. The Journal of Animal Ecology, 78(4), 699–714.

    Article  PubMed  Google Scholar 

  • Bax, N., Williamson, A., Aguero, M., Gonzalez, E., & Geeves, W. (2003). Marine invasive alien species: A threat to global biodiversity. Marine Policy, 27(4), 313–323.

    Article  Google Scholar 

  • Begossi, A. (1992). The use of optimal foraging theory in the understanding of fishing strategies: A case from Sepetiba Bay (Rio de Janeiro State, Brazil). Human Ecology, 20, 463–475.

    Article  Google Scholar 

  • Benedek, Z., Jordán, F., & Báldi, A. (2007). Topological keystone species complexes in ecological interaction networks. Community Ecology, 8, 1–7.

    Article  Google Scholar 

  • Bertrand, S., Bertrand, A., Guevara-Carrasco, R., & Gerlotto, F. (2007). Scale-invariant movements of fishermen: The same foraging strategy as natural predators. Ecological Applications, 17, 331–337.

    Article  PubMed  Google Scholar 

  • Bianchi, G., Gislason, H., Graham, K., Hill, L., **, X., Koranteng, K., et al. (2000). Impact of fishing on size composition and diversity of demersal fish communities. ICES Journal of Marine Science, 57(3), 558–571.

    Google Scholar 

  • Borgatti, S. P. (2003a). The key player problem. In R. Breiger, K. Carley, & P. Pattison (Eds.), Dynamic social network modeling and analysis: Workshop summary and papers (pp. 241–252). Washington DC: Committee on Human Factors, The National Academies Press, 381 pp.

    Google Scholar 

  • Borgatti, S. P. (2003b). Key player. Analytic Technologies. http://www.analytictech.com/

  • Bornatowski, H., Navia, A. F., & Barreto, R. R. (2017). Topological redundancy and “small-world” patterns in a food web in a subtropical ecosystem of Brazil. Marine Ecology, 38, e12407.

    Article  Google Scholar 

  • Bornatowski, H., Navia, A. F., Braga, R. R., Abilhoa, V., & Corrêa, M. F. M. (2014). Ecological importance of sharks and rays in a structural food web analysis in southern Brazil. ICES Journal of Marine Science, 71(7), 1586–1592.

    Article  Google Scholar 

  • Borthagaray, A. I., Arim, M., & Marquet, P. A. (2014). Inferring species roles in metacommunity structure from species co-occurrence networks. Proceedings of the Biological Sciences, 281, 2014–2025.

    Google Scholar 

  • Cantor, M., Pires, M. M., Marquitti, F. M., Raimundo, R. L., Sebastián-González, E., Coltri, P. P., et al. (2017). Nestedness across biological scales. PLoS One, 12(2).

    Google Scholar 

  • Capocefalo, D., Pereira, J., Mazza, T., & Jordán, F. (2018). Food web topology and nested keystone species complexes. Complexity 2018.

    Google Scholar 

  • Cattin, M. F., Bersier, L. F., Banaek-Richter, C., Baltensperger, R., & Gabriel, J. P. (2004). Phylogenetic constraints and adaptation explain food-web structure. Nature, 427(6977), 835.

    Google Scholar 

  • Cohen, J. E., Jonsson, T., & Carpenter, S. R. (2003). Ecological community description using the food web, species abundance, and body size. Proceedings of the National Academy of Sciences of the United States of America, 100, 1781–1786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen, J. E., Pimm, S., Yodzis, P., & Saldaña, J. (1993). Body sizes of animal predators and animal prey in food webs. The Journal of Animal Ecology, 62, 67–78.

    Article  Google Scholar 

  • Coll, M., Palomera, I., & Tudela, S. (2009). Decadal changes in a NW Mediterranean Sea food web relation to fishing exploitation. Ecological Modelling, 220, 2088–2102.

    Google Scholar 

  • Conversi, A., Dakos, V., Gårdmark, A., Ling, S., Folke, C., Mumby, P. J., et al. (2015). A holistic view of marine regime shifts. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1659), 20130279.

    Google Scholar 

  • Daily, G. C., Ehrlich, P. R., & Haddad, N. M. (1993). Double keystone bird in a keystone species complex. Proceedings of the National Academy of Sciences of the United States of America, 90, 592–594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dambacher, J. M., Young, J. W., Olson, R. J., Allain, V., Galvan-Magana, F., Lansdell, M. J., et al. (2010). Analyzing pelagic food webs leading to top predators in the Pacific Ocean: A graph-theoretic approach. Progress in Oceanography, 86, 152–165.

    Article  Google Scholar 

  • Dáttilo, W. (2012). Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Network Biology, 2(4), 127.

    Google Scholar 

  • de Ruiter, P. C., Wolters, V., Moore, J. C., & Winemiller, K. O. (2005). Food web ecology: Playing Jenga and beyond. Science, 309, 68–71.

    Article  PubMed  CAS  Google Scholar 

  • Dell, A. I., Kokkoris, G. D., Banasek-Richter, C., Bersier, L. F., Dunne, J. A., Kondoh, M., et al. (2005). How do complex food webs persist in nature? In M. P. C. de Ruiter, V. Wolters, & J. C. Moore (Eds.), Dynamic food webs: Multispecies assemblages, ecosystem development and environmental change (pp. 425–436). San Diego, CA: Academic Press. isbn:978-0-12-088458-2.

    Chapter  Google Scholar 

  • Díaz-Castelazo, C., Sánchez-Galván, I. R., Guimarães, P. R., Jr., Raimundo, R. L. G., & Rico-Gray, V. (2013). Long-term temporal variation in the organization of an ant–plant network. Annals of Botany, 111(6), 1285–1293.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunne, J. A., Maschner, H., Betts, M. W., Huntly, N., Russell, R., Williams, R. J., et al. (2016). The roles and impacts of human hunter-gatherers in North Pacific marine food webs. Scientific Reports, 6, 21179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5, 558–567.

    Article  Google Scholar 

  • Dunne, J. A., Williams, R. J., & Martinez, N. D. (2004). Network structure and robustness of marine food webs. Marine Ecology Progress Series, 273, 291–302.

    Article  Google Scholar 

  • Endrédi, A., Jordán, F., & Abonyi, A. (2018). Trait-based paradise–or only feeding the computer with biology? Community Ecology, 19(3), 319–321.

    Article  Google Scholar 

  • Essington, T. E., Beaudreau, A. H., & Wiedenmann, J. (2006). Fishing through marine food webs. Proceedings of the National Academy of Sciences, 103(9), 3171–3175.

    Article  CAS  Google Scholar 

  • Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B., & Worm, B. (2016). Megafaunal impacts on structure and function of ocean ecosystems. Annual Review of Environment and Resources, 41, 83–116.

    Google Scholar 

  • Estes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., et al. (2011). Trophic downgrading of planet earth. Science, 333, 301–306.

    Google Scholar 

  • Ferretti, F., Worm, B., Britten, G. L., Heithaus, M. R., & Lotze, H. K. (2010). Patterns and ecosystem consequences of shark declines in the ocean. Ecology Letters, 13(8), 1055–1071.

    PubMed  Google Scholar 

  • Gaichas, S. K., & Francis, R. C. (2008). Network models for ecosystem-based fishery analysis: A review of concepts and application to the Gulf of Alaska marine food web. Canadian Journal of Fisheries and Aquatic Sciences, 65(9), 1965–1982.

    Article  Google Scholar 

  • Gilljam, D., Curtsdotter, A., & Ebenman, B. (2015). Adaptive rewiring aggravates the effects of species loss in ecosystems. Nature Communications, 6, 8412.

    Article  CAS  PubMed  Google Scholar 

  • Grant, W., Marin, S. L., & Pedersen, E. K. (1997). Ecology and natural resource management: Systems analysis and simulation. New Jersey: Wiley.

    Google Scholar 

  • Gross, T., & Blasius, B. (2008). Adaptive coevolutionary networks: A review. Journal of the Royal Society Interface, 5, 259–271.

    Article  Google Scholar 

  • Gross, T., & Sayama, H. (2009). Adaptive networks. In Adaptive networks (pp. 1–8). Berlin: Springer.

    Chapter  Google Scholar 

  • Guimarães, P. R., Jr., Pires, M. M., Jordano, P., Bascompte, J., & Thompson, J. N. (2017). Indirect effects drive coevolution in mutualistic networks. Nature, 550(7677), 511–514.

    Article  PubMed  CAS  Google Scholar 

  • Guimerà, R., & Amaral, L. A. N. (2005). Cartography of complex networks: Modules and universal roles. Journal of Statistical Mechanics Theory and Experiment, 2, P02001.

    Google Scholar 

  • Guimerà, R., Stouffer, D. B., Sales-Pardo, M., Leicht, E. A., Newman, M. E. J., & Amaral, L. A. N. (2010). Origin of compartmentalization in food webs. Ecology, 91, 2941–2951.

    Article  PubMed  Google Scholar 

  • Harary, F. (1961). Who eats whom. General Systems, 6, 41–44.

    Google Scholar 

  • Hillebrand, H., Brey, T., Gutt, J., Hagen, W., Metfies, K., Meyer, B., et al. (2018). Climate change: Warming impacts on marine biodiversity. In Handbook on marine environment protection (pp. 353–373). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  • Hoegh-Guldberg, O., & Bruno, J. F. (2010). The impact of climate change on the world’s marine ecosystems. Science, 328, 1523–1528.

    Article  CAS  PubMed  Google Scholar 

  • Holt, R. D., & Lawton, J. (1994). The ecological consequences of shared natural enemies. Annual Review of Ecology and Systematics, 25(1), 495–520.

    Article  Google Scholar 

  • Hutchings, J. A., & Baum, J. K. (2005). Measuring marine fish biodiversity: Temporal changes in abundance, life history and demography. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1454), 315–338.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ings, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., et al. (2009). Ecological networks–beyond food webs. The Journal of Animal Ecology, 78(1), 253–269.

    Google Scholar 

  • Islam, M. S., & Tanaka, M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Marine Pollution Bulletin, 48(7–8), 624–649.

    Google Scholar 

  • Jackson, J. B., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–637.

    Google Scholar 

  • Jennings, S., Greenstreet, S. P., & Reynolds, J. D. (1999). Structural change in an exploited fish community: A consequence of differential fishing effects on species with contrasting life histories. The Journal of Animal Ecology, 68(3), 617–627.

    Article  Google Scholar 

  • Jennings, S., & Kaiser, M. J. (1998). The effects of fishing on marine ecosystems. Advances in Marine Biology, 34, 201–350.

    Article  Google Scholar 

  • Jones, C. G., Lawton, J. H., & Shachak, M. (1994). Organisms as ecosystem engineers. Oikos, 763(69), 373–386.

    Article  Google Scholar 

  • Jordán, F. (2001). Strong threads and weak chains? - A graph theoretical estimation of the power of indirect effects. Community Ecology, 2, 17–20.

    Article  Google Scholar 

  • Jordán, F. (2009). Keystone species and food webs. Philosophical Transactions of the Royal Society B Biological Sciences, 364(1524), 1733–1741.

    Article  PubMed Central  Google Scholar 

  • Jordán, F., Liu, W. C., & Davis, A. (2006). Topological keystone species: Measures of positional importance in food webs. Oikos, 112, 535–546.

    Article  Google Scholar 

  • Jordán, F., Liu, W. C., & Mike, Á. (2009). Trophic field overlap: A new approach to quantify keystone species. Ecological Modelling, 220, 2899–2907.

    Article  Google Scholar 

  • Jordán, F., Liu, W. C., & van Veen, F. J. F. (2003). Quantifying the importance of species and their interactions in a host-parasitoid community. Community Ecology, 4, 79–88.

    Article  Google Scholar 

  • Jordán, F., & Scheuring, I. (2002). Searching for keystone in ecological networks. Oikos, 99, 607–612.

    Article  Google Scholar 

  • Jordán, F., Takacs-Santa, A., & Molnar, I. (1999). A reliability theoretical quest for keystones. Oikos, 86, 453–462.

    Article  Google Scholar 

  • Jordano, P. (2016). Chasing ecological interactions. PLoS Biology, 14(9).

    Google Scholar 

  • Jørgensen, P. S., Folke, C., & Carroll, S. P. (2019). Evolution in the anthropocene: Informing governance and policy. Annual Review of Ecology, Evolution, and Systematics, 50, 527–546.

    Article  Google Scholar 

  • Kondoh, M. (2003). Foraging adaptation and the relationship between food-web complexity and stability. Science, 299, 1388–1391.

    Article  CAS  PubMed  Google Scholar 

  • Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., & Aschan, M. (2015). Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proceedings of the Royal Society of London - Series B: Biological Sciences, 282(1814), 20151546.

    Google Scholar 

  • Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor, W. W. (2003). Compartments revealed in food-web structure. Nature, 426, 282–285.

    Article  CAS  PubMed  Google Scholar 

  • Laigle, I., Aubin, I., Digel, C., Brose, U., Boulangeat, I., & Gravel, D. (2018). Species traits as drivers of food web structure. Oikos, 127(2), 316–326.

    Article  Google Scholar 

  • Lau, M. K., Borrett, S. R., Baiser, B., Gotelli, N. J., & Ellison, A. M. (2017). Ecological network metrics: Opportunities for synthesis. Ecosphere, 8(8), e01900.

    Article  Google Scholar 

  • Libralato, S., Christensen, V., & Pauly, D. (2006). A method for identifying keystone species in food web models. Ecological Modelling, 195, 153–171.

    Article  Google Scholar 

  • Litzow, M. A., & Urban, D. (2009). Fishing through (and up) Alaskan food webs. Canadian Journal of Fisheries and Aquatic Sciences, 66(2), 201–211.

    Article  Google Scholar 

  • Loeuille, N. (2010). Consequences of adaptive foraging in diverse communities. Functional Ecology, 24, 18–27.

    Article  Google Scholar 

  • Lotze, H. K., Coll, M., & Dunne, J. A. (2011). Historical changes in marine resources, food web structure and ecosystem functioning in the Adriatic Sea, Mediterranean. Ecosystems, 14(2), 198–222.

    Article  Google Scholar 

  • Lotze, H. K., & Worm, B. (2009). Historical baselines for large marine animals. Trends in Ecology & Evolution, 24(5), 54–262.

    Article  Google Scholar 

  • Luczkovich, J. J., Borgatti, S. P., Johnson, J. C., & Everett, M. G. (2003). Defining and measuring trophic role similarity in food webs using regular equivalence. Journal of Theoretical Biology, 220(3), 303–321.

    Article  PubMed  Google Scholar 

  • Marina, T. I., Saravia, L. A., Cordone, G., Salinas, V., Doyle, S. R., & Momo, F. R. (2018). Architecture of marine food webs: To be or not be a ‘small-world’. PLoS One, 13(5), e0198217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martinez, N. D. (1992). Constant connectance in community food webs. The American Naturalist, 139, 1208–1218.

    Article  Google Scholar 

  • Maschner, H. D., Betts, M. W., Cornell, J., Dunne, J. A., Finney, B., Huntly, N., et al. (2009). An introduction to the biocomplexity of Sanak Island, western Gulf of Alaska 1. Pacific Science, 63(4), 673–710.

    Article  Google Scholar 

  • May, R. M. (1972). Will a large complex system be stable? Nature, 238(5364), 413–414.

    Article  CAS  PubMed  Google Scholar 

  • May, R. M. (1973). Qualitative stability in model ecosystems. Ecology, 54(3), 638–641.

    Article  Google Scholar 

  • May, R. M., Beddington, J. R., Clark, C. W., Holt, S. J., & Laws, R. M. (1979). Management of multi-species fisheries. Science, 205, 267–277.

    Article  CAS  PubMed  Google Scholar 

  • McCauley, D. J., Pinsky, M. L., Palumbi, S. R., Estes, J. A., Joyce, F. H., & Warner, R. R. (2015). Marine defaunation: Animal loss in the global ocean. Science, 347(6219), 1255641.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, S. M., Miller, K. H., & Drake, J. (2001). Networking tips for social scientists and ecologists. Science, 293, 1604–1605.

    Article  CAS  PubMed  Google Scholar 

  • Menge, B. A. (1995). Indirect effects in marine rocky intertidal interaction webs: Patterns and importance. Ecological Monographs, 65, 21–74.

    Article  Google Scholar 

  • Montoya, J. M., Pimm, S. L., & Solé, R. V. (2006). Ecological networks and their fragility. Nature, 442(7100), 259–264.

    Article  CAS  PubMed  Google Scholar 

  • Montoya, J. M., & Solé, R. V. (2002). Small world patterns in food webs. Journal of Theoretical Biology, 214(3), 405–412.

    Article  PubMed  Google Scholar 

  • Myers, R. A., Baum, J. K., Shepherd, T. D., Powers, S. P., & Peterson, C. H. (2007). Cascading effects of the loss of apex predatory sharks from a coastal ocean. Science, 315, 1846–1850.

    Article  CAS  PubMed  Google Scholar 

  • Myers, R. A., Hutchings, J. A., & Barrowman, N. J. (1996). Hypothesis for the decline of cod in the North Atlantic. Marine Ecology Progress Series, 68, 293–308.

    Article  Google Scholar 

  • Navia, A. F. (2013). Función ecológica de tiburones y rayas en un ecosistema costero del Pacífico colombiano (PhD dissertation. Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, Mexico), 170 pp.

    Google Scholar 

  • Navia, A. F., Cortés, E., & Cruz-Escalona, V. H. (2012). Use of network analysis in food web conservation. Current Conservation, 6(4), 18–21.

    Google Scholar 

  • Navia, A. F., Cortés, E., Jordán, F., Cruz-Escalona, V. H., & Mejía-Falla, P. A. (2012). Changes to marine trophic networks caused by fishing. In Diversity of ecosystems. InTech.

    Google Scholar 

  • Navia, A. F., Cortés, E., & Mejía-Falla, P. A. (2010). Topological analysis of the ecological importance of elasmobranch fishes: A food web study on the Gulf of Tortugas, Colombia. Ecological Modelling, 221, 2918–2926.

    Article  Google Scholar 

  • Navia, A. F., Cruz-Escalona, V. H., Giraldo, A., & Barausse, A. (2016). The structure of a marine tropical food web, and its implications for ecosystem-based fisheries management. Ecological Modelling, 328, 23–33.

    Article  Google Scholar 

  • Navia, A. F., Maciel-Zapata, S. R., González-Acosta, A. F., Leaf, R. T., & Cruz-Escalona, V. H. (2019). Importance of weak trophic interactions in the structure of the food web in La Paz Bay, southern Gulf of California: A topological approach. Bulletin of Marine Science, 95(2), 199–215.

    Article  Google Scholar 

  • Navia, A. F., & Mejía-Falla, P. A. (2016). Fishing effects on elasmobranchs from the Pacific Coast of Colombia. Universitas Scientiarum, 21(1), 9–22.

    Article  Google Scholar 

  • Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69, 026113–026115.

    Article  CAS  Google Scholar 

  • Nixon, S. W. (1995). Coastal marine eutrophication: A definition, social causes, and future concerns. Ophelia, 41, 199–219.

    Article  Google Scholar 

  • Olesen, J. M., Bascompte, J., Dupont, Y. L., & Jordano, P. (2007). The modularity of pollination networks. Proceedings of the National Academy of Sciences of the United States of America, 104, 19891–19896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmo-Gilabert, R., Navia, A. F., de la Cruz-Agüero, G., Molinero, J. C., Sommer, U., & Scotti, M. (2019). Body size and mobility explain species centralities in the Gulf of California food web. Community Ecology, 20(2), 149–160.

    Article  Google Scholar 

  • Ortiz, M., Campos, L., Berrios, F., Rodriguez-Zaragoza, F., Hermosillo-Nuñez, B., & González, J. (2013). Network properties and keystoneness assessment in different intertidal communities dominated by two ecosystem engineer species (SE Pacific coast): A comparative analysis. Ecological Modelling, 250, 307–318.

    Article  Google Scholar 

  • Ortiz, M., Hermosillo-Nuñez, B., González, J., Rodríguez-Zaragoza, F., Gómez, I., & Jordán, F. (2017). Quantifying keystone species complexes: Ecosystem-based conservation management in the King George Island (Antarctic Peninsula). Ecological Indicators, 81, 453–460.

    Article  Google Scholar 

  • Ortiz, M., Rodriguez-Zaragosa, F., Hermosillo-Nunez, B., & Jordán, F. (2015). Control strategy scenarios for the alien lionfish Pterois volitans in Chinchorro Bank (Mexican Caribbean) based on semi-quantitative loop network analysis. PLoS One, 10(6), 0130261.

    Article  Google Scholar 

  • Oshima, M. C., & Leaf, R. T. (2018). Understanding the structure and resilience of trophic dynamics in the northern Gulf of Mexico using network analysis. Bulletin of Marine Science, 94(1), 21–46.

    Article  Google Scholar 

  • Pacheco, J. M., Traulsen, A., & Nowak, M. A. (2006). Coevolution of strategy and structure in complex networks with dynamical linking. Physical Review Letters, 97, 258103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paine, R. T. (1969). A note on trophic complexity and community stability. The American Naturalist, 103(929), 91–93.

    Article  Google Scholar 

  • Pandolfi, J. M., Bradbury, R. H., Sala, E., Hughes, T. P., Bjorndal, K. A., Cooke, R. G., et al. (2003). Global trajectories of the long-term decline of coral reef ecosystems. Science, 301(5635), 955–958.

    Google Scholar 

  • Pascual, M., & Dunne, J. A. (Eds.). (2006). Ecological networks: Linking structure to dynamics in food webs. Oxford University Press.

    Google Scholar 

  • Pauly, D., Christensen, V., Dalsgaard, J., Froese, R., & Torres, F. (1998). Fishing down marine food webs. Science, 279, 197–212.

    Article  Google Scholar 

  • Pauly, D., & Zeller, D. (2016). Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nature Communications, 7, 10244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, J., & Jordán, F. (2017). Multi-node selection of patches for protecting habitat connectivity: Fragmentation versus reachability. Ecological Indicators, 81, 192–200.

    Article  Google Scholar 

  • Pereira, J., Saura, S., & Jordán, F. (2017). Single-node vs. multi-node centrality in landscape graph analysis: Key habitat patches and their protection for 20 bird species in NE Spain. Methods in Ecology and Evolution, 8(11), 1458–1467.

    Article  Google Scholar 

  • Pérez-Matus, A., Ospina-Alvarez, A., Camus, P. A., Carrasco, S. A., Fernandez, M., Gelcich, S., et al. (2017). Temperate rocky subtidal reef community reveals human impacts across the entire food web. Marine Ecology Progress Series, 567, 1–16.

    Article  Google Scholar 

  • Pimm, S. L. (1979). Structure of food webs. Theoretical Population Biology, 16(2), 144–158.

    Article  CAS  PubMed  Google Scholar 

  • Pimm, S. L. (2002). Food webs. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Pocock, M. J., Evans, D. M., Fontaine, C., Harvey, M., Julliard, R., McLaughlin, O., et al. (2016). The visualisation of ecological networks, and their use as a tool for engagement, advocacy and management. In Advances in ecological research (Vol. 54, pp. 41–85). Academic Press.

    Google Scholar 

  • Poisot, T., Stouffer, D. B., & Gravel, D. (2015). Beyond species: Why ecological interactions vary through space and time. Oikos, 124, 243–251.

    Article  Google Scholar 

  • Poos, J. J., & Rijnsdorp, A. D. (2007). An “experiment” on effort allocation of fishing vessels: The role of interference competition and area specialization. Canadian Journal of Fisheries and Aquatic Sciences, 64, 304–313.

    Article  Google Scholar 

  • Raimundo, R. L. G., Guimarães, P. R., Jr., & Evans, D. M. (2018). Adaptive networks for restoration ecology. Trends in Ecology & Evolution, 33(9), 664–675.

    Article  Google Scholar 

  • Raimundo, R. L. G., Marquitti, F. M. D., de Andreazzi, C. S., Pires, M. M., & Guimarães, P. R. (2018). Ecology and evolution of species-rich interaction networks. In Ecological networks in the tropics (pp. 43–58). Cham, Switzerland: Springer.

    Google Scholar 

  • Rezende, E. L., Albert, E. M., Fortuna, M. A., & Bascompte, J. (2009). Compartments in a marine food web associated with phylogeny, body mass, and habitat structure. Ecology Letters, 12(8), 779–788.

    Article  PubMed  Google Scholar 

  • Ritchie, E. G., & Johnson, C. N. (2009). Predator interactions, mesopredator release and biodiversity conservation. Ecology Letters, 12(9), 982–998.

    Article  PubMed  Google Scholar 

  • Rohr, R. P., & Bascompte, J. (2014). Components of phylogenetic signal in antagonistic and mutualistic networks. The American Naturalist, 184(5), 556–564.

    Article  PubMed  Google Scholar 

  • Rohr, R. P., Saavedra, S., & Bascompte, J. (2014). On the structural stability of mutualistic systems. Science, 345(6195).

    Google Scholar 

  • Saravia, L. A., Marina, T. I., De Troch, M., & Momo, F. R. (2018). Ecological network assembly: How the regional meta web influence local food webs. BioRxiv 340430.

    Google Scholar 

  • Sethi, S. A., Branch, T. A., & Watson, R. (2010). Global fishery development patterns are driven by profit but not trophic level. Proceedings of the National Academy of Sciences, 107, 12163–12167.

    Article  CAS  Google Scholar 

  • Shepherd, T. D., & Myers, R. A. (2005). Direct and indirect fishery effects on small coastal elasmobranchs in the northern Gulf of Mexico. Ecology Letters, 8(10), 1095–1104.

    Article  Google Scholar 

  • Solé, R. V., & Montoya, M. (2001). Complexity and fragility in ecological networks. Proceedings of the Royal Society of London - Series B: Biological Sciences, 268(1480), 2039–2045.

    Article  PubMed  PubMed Central  Google Scholar 

  • Standström, O., Larsson, A., Andersson, J., Appelberg, M., Bignert, A., & Helene, E. K. (2005). Three decades of Swedish experience demonstrates the need for integrated long-term monitoring of fish in marine coastal areas. The Water Quality Research Journal of Canada, 40, 233–250.

    Article  Google Scholar 

  • Stevens, J. D., Bonfil, R., Dulvy, N. K., & Walker, P. A. (2000). The effects of fishing on sharks, rays, and chimeras (chondrichthyans), and the implications for marine ecosystems. ICES Journal of Marine Science, 57, 476–494.

    Article  Google Scholar 

  • Suweis, S., Simini, F., Banavar, J. R., & Maritan, A. (2013). Emergence of structural and dynamical properties of ecological mutualistic networks. Nature, 500(7463), 449–452.

    Google Scholar 

  • Stouffer, D. B., & Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences of the United States of America, 108, 3648–3652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strogatz, S. H. (2001). Exploring complex networks. Nature, 410(6825), 268–276.

    Article  CAS  PubMed  Google Scholar 

  • Thébault, E., & Fontaine, C. (2010). Stability of ecological communities and the architecture of mutualistic and trophic networks. Science, 329, 853–856.

    Article  PubMed  CAS  Google Scholar 

  • Tromeur, E., & Loeuille, N. (2018). Adaptive harvesting drives fishing down processes, regime shifts, and resilience changes in predator-prey systems. BioRxiv 290460.

    Google Scholar 

  • Valdovinos, F. S., Ramos-Jiliberto, R., Garay-Narvaez, L., Urbani, P., & Dunne, J. A. (2010). Consequences of adaptive behaviour for the structure and dynamics of food webs. Ecology Letters, 13, 1546–1559.

    Article  PubMed  Google Scholar 

  • Vázquez, D. P., Melián, C. J., Williams, N. M., Blüthgen, N., Krasnov, B. R., & Poulin, R. (2007). Species abundance and asymmetric interaction strength in ecological networks. Oikos, 116(7), 1120–1127.

    Article  Google Scholar 

  • Vinagre, C., Costa, M. J., Wood, S. A., Williams, R. J., & Dunne, J. A. (2019). Potential impacts of climate change and humans on the trophic network organization of estuarine food webs. Marine Ecology Progress Series, 616, 13–24.

    Article  Google Scholar 

  • Vitousek, P. M., D’antonio, C. M., Loope, L. L., Rejmanek, M., & Westbrooks, R. (1997). Introduced species: A significant component of human-caused global change. New Zealand Journal of Ecology, 21(1), 1–16.

    Google Scholar 

  • Wasserman, S., & Faust, K. 1994. Social network analysis: Methods and applications (Vol. 8). Cambridge University Press.

    Google Scholar 

  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442.

    Article  CAS  PubMed  Google Scholar 

  • Webb, C. O., Ackerly, D., McPeek, M. A., & Donoghue, M. J. (2002). Phylogenies and community ecology. Annual Review of Ecology and Systematics, 33(1), 475–505.

    Article  Google Scholar 

  • Worm, B., Barbier, E. B., Beaumont, N., Duffy, J. E., Folke, C., Halpern, B. S. et al. (2006). Impacts on biodiversity loss on ocean ecosystem services. Science, 314, 787–790.

    Google Scholar 

  • Yen, J. D., Cabral, R. B., Cantor, M., Hatton, I., Kortsch, S., Patrício, J., & Yamamichi, M. (2016). Linking structure and function in food webs: Maximization of different ecological functions generates distinct food web structures. The Journal of Animal Ecology, 85, 537–547.

    Google Scholar 

  • Yodzis, P. (2000). Diffuse effects in food webs. Ecology, 81(1), 261–266.

    Article  Google Scholar 

  • Zhang, F., Hui, C., & Terblanche, J. S. (2011). An interaction switch predicts the nested architecture of mutualistic networks. Ecology Letters, 14, 797–803.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés F. Navia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Márquez-Velásquez, V., Raimundo, R.L.G., de Souza Rosa, R., Navia, A.F. (2021). The Use of Ecological Networks as Tools for Understanding and Conserving Marine Biodiversity. In: Ortiz, M., Jordán, F. (eds) Marine Coastal Ecosystems Modelling and Conservation. Springer, Cham. https://doi.org/10.1007/978-3-030-58211-1_9

Download citation

Publish with us

Policies and ethics

Navigation