Bioceramic Materials in Regenerative Endodontics

  • Chapter
  • First Online:
Bioceramic Materials in Clinical Endodontics

Abstract

Regenerative endodontics as a biology-based treatment concept and alternative to the apical plug in immature teeth with pulp necrosis has become part of the endodontic treatment spectrum in the last few years. After thorough disinfection, provocation of bleeding into the canal induces a clot, which can serve as a starting point for repair and new tissue formation. Similar to conventional root canal treatment, regenerative endodontics involves the use of irrigants, intracanal medicaments, and other dental materials, in particular hydraulic calcium silicate cements. Whereas the procedure is not difficult from a technical point of view substantial knowledge of the effects of these materials on the surrounding structures is required. Not only the biofilm but also the dentine and its various proteins as well as the surrounding cells will be affected. In turn, the materials will be affected, especially by the blood clot. This chapter describes the procedural details of regenerative endodontic procedures and the interactions of materials and surrounding tissues with a particular focus on the role of hydraulic calcium silicates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nygaard-Østby B. The role of the blood clot in endodontic therapy. An experimental histologic study. Acta Odontol Scand. 1961;19:324–53.

    Google Scholar 

  2. Skoglund A, Tronstad L, Wallenius K. A microangiographic study of vascular changes in replanted and autotransplanted teeth of young dogs. Oral Surg Oral Med Oral Pathol. 1978;45(1):17–28.

    Article  PubMed  Google Scholar 

  3. Claus I, Laureys W, Cornelissen R, Dermaut LR. Histologic analysis of pulpal revascularization of autotransplanted immature teeth after removal of the original pulp tissue. Am J Orthod Dentofac Orthop. 2004;125(1):93–9.

    Article  Google Scholar 

  4. Iwaya SI, Ikawa M, Kubota M. Revascularization of an immature permanent tooth with apical periodontitis and sinus tract. Dent Traumatol. 2001;17(4):185–7.

    Article  PubMed  Google Scholar 

  5. Banchs F, Trope M. Revascularization of immature permanent teeth with apical periodontitis: new treatment protocol? J Endod. 2004;30(4):196–200.

    Article  PubMed  Google Scholar 

  6. Diogenes AR, Henry MA, Teixeira FB, Hargreaves KM. An update on clinical regenerative endodontics. Endod Top. 2013;28(1):2–23.

    Article  Google Scholar 

  7. Torabinejad M, Nosrat A, Verma P, Udochukwu O. Regenerative endodontic treatment or mineral trioxide aggregate apical plug in teeth with necrotic pulps and open apices: a systematic review and meta-analysis. J Endod. 2017;43(11):1806–20.

    Article  PubMed  Google Scholar 

  8. Tong HJ, Rajan S, Bhujel N, Kang J, Duggal M, Nazzal H. Regenerative endodontic therapy in the management of nonvital immature permanent teeth: a systematic review-outcome evaluation and meta-analysis. J Endod. 2017;43(9):1453–64.

    Article  PubMed  Google Scholar 

  9. Nicoloso GF, Goldenfum GM, Pizzol TDSD, Scarparo RK, Montagner F, de Almeida Rodrigues J, et al. Pulp revascularization or apexification for the treatment of immature necrotic permanent teeth: systematic review and meta-analysis. J Clin Pediatr Dent. 2019;43(5):305–13.

    Article  PubMed  Google Scholar 

  10. Galler KM, Krastl G, Simon S, Van Gorp G, Meschi N, Vahedi B, et al. European Society of Endodontology position statement: revitalization procedures. Int Endod J. 2016;49(8):717–23.

    Article  PubMed  Google Scholar 

  11. American Association of Endodontists (AAE). Clinical considerations for a regenerative procedure.

    Google Scholar 

  12. Hermann BW. Calciumhydroxid als Mittel zum Behandeln und Füllen von Wurzelkanälen. Doctoral dissertation, University of Würzburg. 1920.

    Google Scholar 

  13. Lovelace TW, Henry MA, Hargreaves KM, Diogenes AR. Evaluation of the delivery of mesenchymal stem cells into the root canal space of necrotic immature teeth after clinical regenerative endodontic procedure. J Endod. 2011;37(2):133–8.

    Article  PubMed  Google Scholar 

  14. Bakopoulou A, Leyhausen G, Volk J, Tsiftsoglou A, Garefis P, Koidis P, et al. Comparative analysis of in vitro osteo/odontogenic differentiation potential of human dental pulp stem cells (DPSCs) and stem cells from the apical papilla (SCAP). Arch Oral Biol. 2011;56(7):709–21.

    Article  PubMed  Google Scholar 

  15. Wang X, Thibodeau B, Trope M, Lin LM, Huang GT-J. Histologic characterization of regenerated tissues in canal space after the revitalization/revascularization procedure of immature dog teeth with apical periodontitis. J Endod. 2010;36(1):56–63.

    Article  PubMed  Google Scholar 

  16. da Silva LAB, Nelson-Filho P, da Silva RAB, Flores DSH, Heilborn C, Johnson JD, et al. Revascularization and periapical repair after endodontic treatment using apical negative pressure irrigation versus conventional irrigation plus triantibiotic intracanal dressing in dogs’ teeth with apical periodontitis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109(5):779–87.

    Article  PubMed  Google Scholar 

  17. Shimizu E, Ricucci D, Albert J, Alobaid AS, Gibbs JL, Huang GT-J, et al. Clinical, radiographic, and histological observation of a human immature permanent tooth with chronic apical abscess after revitalization treatment. J Endod. 2013;39(8):1078–83.

    Article  PubMed  Google Scholar 

  18. Austah O, Joon R, Fath WM, Chrepa V, Diogenes AR, EzEldeen M, et al. Comprehensive characterization of 2 immature teeth treated with regenerative endodontic procedures. J Endod. 2018;44(12):1802–11.

    Article  PubMed  Google Scholar 

  19. Diogenes AR, Ruparel NB, Shiloah Y, Hargreaves KM. Regenerative endodontics: a way forward. J Am Dent Assoc. 2016;147(5):372–80.

    Article  PubMed  Google Scholar 

  20. Kim SG, Malek M, Sigurdsson A, Lin LM, Kahler B. Regenerative endodontics: a comprehensive review. Int Endod J. 2018;51(12):1367–88.

    Article  PubMed  Google Scholar 

  21. Bucchi C, Marcé-Nogué J, Galler KM, Widbiller M. Biomechanical performance of an immature maxillary central incisor after revitalization: a finite element analysis. Int Endod J. 2019;52(10):1508–18.

    Article  PubMed  Google Scholar 

  22. Diogenes AR, Ruparel NB, Teixeira FB, Hargreaves KM. Translational science in disinfection for regenerative endodontics. J Endod. 2014;40(4 Suppl):S52–7.

    Article  PubMed  Google Scholar 

  23. Galler KM. Clinical procedures for revitalization: current knowledge and considerations. Int Endod J. 2016;49(10):926–36.

    Article  PubMed  Google Scholar 

  24. Martin DE, De Almeida JFA, Henry MA, Khaing ZZ, Schmidt CE, Teixeira FB, et al. Concentration-dependent effect of sodium hypochlorite on stem cells of apical papilla survival and differentiation. J Endod. 2014;40(1):51–5.

    Article  PubMed  Google Scholar 

  25. Galler KM, Widbiller M, Buchalla W, Eidt A, Hiller K-A, Hoffer PC, et al. EDTA conditioning of dentine promotes adhesion, migration and differentiation of dental pulp stem cells. Int Endod J. 2016;49(6):581–90.

    Article  PubMed  Google Scholar 

  26. Mohammadi Z, Dummer PMH. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int Endod J. 2011;44(8):697–730.

    Article  PubMed  Google Scholar 

  27. Lin J, Zeng Q, Wei X, Zhao W, Cui M, Gu J, et al. Regenerative endodontics versus apexification in immature permanent teeth with apical periodontitis: a prospective randomized controlled study. J Endod. 2017;43(11):1821–7.

    Article  PubMed  Google Scholar 

  28. Kahler B, Rossi-Fedele G, Chugal N, Lin LM. An evidence-based review of the efficacy of treatment approaches for immature permanent teeth with pulp necrosis. J Endod. 2017;43(7):1052–7.

    Article  PubMed  Google Scholar 

  29. Almutairi W, Yassen GH, Aminoshariae A, Williams KA, Mickel A. Regenerative endodontics: a systematic analysis of the failed cases. J Endod. 2019;45:567.

    Article  PubMed  Google Scholar 

  30. Meschi N, Hilkens P, Van Gorp G, Strijbos O, Mavridou AM, de Llano Perula MC, et al. Regenerative endodontic procedures posttrauma: immunohistologic analysis of a retrospective series of failed cases. J Endod. 2019;45(4):427–34.

    Article  PubMed  Google Scholar 

  31. Verma P, Nosrat A, Kim JR, Price JB, Wang P, Bair E, et al. Effect of residual bacteria on the outcome of pulp regeneration in vivo. J Dent Res. 2017;96(1):100–6.

    Article  PubMed  Google Scholar 

  32. Cvek M. Prognosis of luxated non-vital maxillary incisors treated with calcium hydroxide and filled with gutta-percha. A retrospective clinical study. Dent Traumatol. 1992;8(2):45–55.

    Article  Google Scholar 

  33. Zhou R, Wang Y, Chen Y, Chen S, Lyu H, Cai Z, et al. Radiographic, histologic, and biomechanical evaluation of combined application of platelet-rich fibrin with blood clot in regenerative endodontics. J Endod. 2017;43(12):2034–40.

    Article  PubMed  Google Scholar 

  34. Ree MH, Schwartz RS. Long-term success of nonvital, immature permanent incisors treated with a mineral trioxide aggregate plug and adhesive restorations: a case series from a private endodontic practice. J Endod. 2017;43(8):1370–7.

    Article  PubMed  Google Scholar 

  35. Jamshidi D, Homayouni H, Moradi Majd N, Shahabi S, Arvin A, Ranjbar OB. Impact and fracture strength of simulated immature teeth treated with mineral trioxide aggregate apical plug and fiber post versus revascularization. J Endod. 2018;44(12):1878–82.

    Article  PubMed  Google Scholar 

  36. Belli S, Eraslan O, Eskitaşcıoğlu G. Effect of different treatment options on biomechanics of immature teeth: a finite element stress analysis study. J Endod. 2018;44(3):475–9.

    Article  PubMed  Google Scholar 

  37. Kontakiotis EG, Filippatos CG, Tzanetakis GN, Agrafioti A. Regenerative endodontic therapy: a data analysis of clinical protocols. J Endod. 2015;41(2):146–54.

    Article  PubMed  Google Scholar 

  38. Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J. 2008;41(5):408–17.

    Article  PubMed  Google Scholar 

  39. Koutroulis A, Kuehne SA, Cooper PR, Camilleri J. The role of calcium ion release on biocompatibility and antimicrobial properties of hydraulic cements. Sci Rep. 2019;9(1):19019–0.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Neville AM. Properties of concrete. Englewood cliffs, NJ: Prentice Hall; 2011, 1 p.

    Google Scholar 

  41. Darvell BW, Wu RCT. “MTA-”an hydraulic silicate cement: review update and setting reaction. Dent Mater. 2011;27(5):407–22.

    Article  Google Scholar 

  42. Camilleri J. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution. J Endod. 2014;40(3):436–40.

    Article  PubMed  Google Scholar 

  43. Marciano MA, Costa RM, Camilleri J, Mondelli RFL, Guimarães BM, Duarte MAH. Assessment of color stability of white mineral trioxide aggregate angelus and bismuth oxide in contact with tooth structure. J Endod. 2014;40(8):1235–40.

    Article  PubMed  Google Scholar 

  44. Vallés M, Mercadé M, Durán-Sindreu F, Bourdelande JL, Roig M. Color stability of white mineral trioxide aggregate. Clin Oral Investig. 2013;17(4):1155–9.

    Article  PubMed  Google Scholar 

  45. Guimarães BM, Tartari T, Marciano MA, Vivan RR, Mondeli RFL, Camilleri J, et al. Color stability, radiopacity, and chemical characteristics of white mineral trioxide aggregate associated with 2 different vehicles in contact with blood. J Endod. 2015;41(6):947–52.

    Article  PubMed  Google Scholar 

  46. Felman D, Parashos P. Coronal tooth discoloration and white mineral trioxide aggregate. J Endod. 2013;39(4):484–7.

    Article  PubMed  Google Scholar 

  47. Camilleri J. Mineral trioxide aggregate: present and future developments. Endod Top. 2015;32(1):31–46.

    Article  Google Scholar 

  48. Duarte MAH, De Oliveira Demarchi ACC, Yamashita JC, Kuga MC, De Campos Fraga S. Arsenic release provided by MTA and Portland cement. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99(5):648–50.

    Article  PubMed  Google Scholar 

  49. Camilleri J. Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater. 2011;27(8):836–44.

    Article  PubMed  Google Scholar 

  50. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 2013;29(5):580–93.

    Article  PubMed  Google Scholar 

  51. Widbiller M, Lindner SR, Buchalla W, Eidt A, Hiller K-A, Schmalz G, et al. Three-dimensional culture of dental pulp stem cells in direct contact to tricalcium silicate cements. Clin Oral Investig. 2016;20(2):237–46.

    Article  PubMed  Google Scholar 

  52. Keskin C, Demiryurek EO, Ozyurek T. Color stabilities of calcium silicate-based materials in contact with different irrigation solutions. J Endod. 2015;41(3):409–11.

    Article  PubMed  Google Scholar 

  53. Camilleri J. Staining potential of neo MTA Plus, MTA Plus, and Biodentine used for pulpotomy procedures. J Endod. 2015;41(7):1139–45.

    Article  PubMed  Google Scholar 

  54. Camilleri J. Hydration characteristics of Biodentine and TheraCal used as pulp cap** materials. Dent Mater. 2014;30(7):709–15.

    Article  PubMed  Google Scholar 

  55. Camilleri J, Laurent P, About I. Hydration of biodentine, Theracal LC, and a prototype tricalcium silicate–based dentin replacement material after pulp cap** in entire tooth cultures. J Endod. 2014;40(11):1846–54.

    Article  PubMed  Google Scholar 

  56. Bortoluzzi EA, Niu L-N, Palani CD, El-Awady AR, Hammond BD, Pei D-D, et al. Cytotoxicity and osteogenic potential of silicate calcium cements as potential protective materials for pulpal revascularization. Dent Mater. 2015;31(12):1510–22.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Collado-González M, García-Bernal D, Oñate-Sánchez RE, Ortolani-Seltenerich PS, Álvarez-Muro T, Lozano A, et al. Cytotoxicity and bioactivity of various pulpotomy materials on stem cells from human exfoliated primary teeth. Int Endod J. 2017;50(Suppl 2):e19–30.

    Article  PubMed  Google Scholar 

  58. Camilleri J, Sorrentino F, Damidot D. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™. Clin Oral Investig. 2014;19(3):1–10.

    Google Scholar 

  59. Schembri-Wismayer P, Camilleri J. Why biphasic? Assessment of the effect on cell proliferation and expression. J Endod. 2017;43(5):751–9.

    Article  PubMed  Google Scholar 

  60. Zhou H-M, Shen Y, Zheng W, Li L, Zheng Y-F, Haapasalo M. Physical properties of 5 root canal sealers. J Endod. 2013;39(10):1281–6.

    Article  PubMed  Google Scholar 

  61. Bohner M, Lemaitre J. Can bioactivity be tested in vitro with SBF solution? Biomaterials. 2009;30(12):2175–9.

    Article  PubMed  Google Scholar 

  62. Mozafari M, Banijamali S, Baino F, Kargozar S, Hill RG. Calcium carbonate: adored and ignored in bioactivity assessment. Acta Biomater. 2019;91:35–47.

    Article  PubMed  Google Scholar 

  63. Niu L-N, Jiao K, Wang T-D, Zhang W, Camilleri J, Bergeron BE, et al. A review of the bioactivity of hydraulic calcium silicate cements. J Dent. 2014;42(5):517–33.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Okiji T, Yoshiba K. Reparative dentinogenesis induced by mineral trioxide aggregate: a review from the biological and physicochemical points of view. Int J Dent. 2009;2009(3):464280–12.

    PubMed  PubMed Central  Google Scholar 

  65. Schembri Wismayer P, Lung CYK, Rappa F, Cappello F, Camilleri J. Assessment of the interaction of Portland cement-based materials with blood and tissue fluids using an animal model. Sci Rep. 2016;6(1):34547–9.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Meschi N, Li X, Van Gorp G, Camilleri J, Van Meerbeek B, Lambrechts P. Bioactivity potential of Portland cement in regenerative endodontic procedures: from clinic to lab. Dent Mater. 2019;35(9):1342–50.

    Article  PubMed  Google Scholar 

  67. Hench LL. Biological applications of bioactive glasses, vol. 13. Reading: Harwood Academic Publishers; 1996, 1 p.

    Google Scholar 

  68. Kim Y, Kim S, Shin YS, Jung I-Y, Lee SJ. Failure of setting of mineral trioxide aggregate in the presence of fetal bovine serum and its prevention. J Endod. 2012;38(4):536–40.

    Article  PubMed  Google Scholar 

  69. Kang JS, Rhim EM, Huh SY, Ahn SJ, Kim DS, Kim SY, et al. The effects of humidity and serum on the surface microhardness and morphology of five retrograde filling materials. Scanning. 2012;34(4):207–14.

    Article  PubMed  Google Scholar 

  70. Nekoofar MH, Oloomi K, Sheykhrezae MS, Tabor R, Stone DF, Dummer PMH. An evaluation of the effect of blood and human serum on the surface microhardness and surface microstructure of mineral trioxide aggregate. Int Endod J. 2010;43(10):849–58.

    Article  PubMed  Google Scholar 

  71. Nekoofar MH, Stone DF, Dummer PMH. The effect of blood contamination on the compressive strength and surface microstructure of mineral trioxide aggregate. Int Endod J. 2010;43(9):782–91.

    Article  PubMed  Google Scholar 

  72. Guneser MB, Akbulut MB, Eldeniz AU. Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. J Endod. 2013;39(3):380–4.

    Article  PubMed  Google Scholar 

  73. Nagas E, Cehreli ZC, Uyanik MO, Vallittu PK, Lassila LVJ. Effect of several intracanal medicaments on the push-out bond strength of ProRoot MTA and Biodentine. Int Endod J. 2016;49(2):184–8.

    Article  PubMed  Google Scholar 

  74. Hong S-T, Bae K-S, Baek S-H, Kum K-Y, Shon W-J, Lee W. Effects of root canal irrigants on the push-out strength and hydration behavior of accelerated mineral trioxide aggregate in its early setting phase. J Endod. 2010;36(12):1995–9.

    Article  PubMed  Google Scholar 

  75. Uyanik MO, Nagas E, Sahin C, Dagli F, Cehreli ZC. Effects of different irrigation regimens on the sealing properties of repaired furcal perforations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;107(3):e91–5.

    Article  PubMed  Google Scholar 

  76. Torabinejad M, Parirokh M, Dummer PMH. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part II: other clinical applications and complications. Int Endod J. 2018;51(3):284–317.

    Article  PubMed  Google Scholar 

  77. Yoldaş SE, Bani M, Atabek D, Bodur H. Comparison of the potential discoloration effect of bioaggregate, biodentine, and white mineral trioxide aggregate on bovine teeth: in vitro research. J Endod. 2016;42(12):1815–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin M. Galler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galler, K.M., Widbiller, M., Camilleri, J. (2021). Bioceramic Materials in Regenerative Endodontics. In: Drukteinis, S., Camilleri, J. (eds) Bioceramic Materials in Clinical Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-030-58170-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58170-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58169-5

  • Online ISBN: 978-3-030-58170-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation