Operators, Algebras and Their Invariants for Aperiodic Tilings

  • Chapter
  • First Online:
Substitution and Tiling Dynamics: Introduction to Self-inducing Structures

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2273))

  • 568 Accesses

Abstract

We review the construction of operators and algebras from tilings of Euclidean space. This is mainly motivated by physical questions, in particular after topological properties of materials. We explain how the physical notion of locality of interaction is related to the mathematical notion of pattern equivariance for tilings and how this leads naturally to the definition of tiling algebras. We give a brief introduction to the K-theory of tiling algebras and explain how the algebraic topology of K-theory gives rise to a correspondence between the topological invariants of the bulk and its boundary of a material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 53.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 69.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Originally the decorations encode matching conditions, but we will not make use of that here.

  2. 2.

    The Hausdorff metric between equivalence classes of compact sets is the infimum over the Hausdorff distances between representatives of the classes.

  3. 3.

    At low enough temperature.

  4. 4.

    In [37] one finds a formula for the same class with a different representative, the above is also be valid if A is a real C -algebra.

References

  1. J.E. Anderson, I.F. Putnam, Topological invariants for substitution tilings and their associated C -algebras. Ergod. Theory Dyn. Syst. 18(3), 509–537 (1998)

    Article  MathSciNet  Google Scholar 

  2. F. Baboux, E. Levy, A. Lemaitre, C. Gómez, E. Galopin, L.L. Gratiet, I. Sagnes, A Amo, J. Bloch, E. Akkermans, Measuring topological invariants from generalized edge states in polaritonic quasicrystals. Phys. Rev. B 95, 161114(R) (2017)

    Google Scholar 

  3. A. Avila, S. Jitomirskaya, The ten Martini problem. Ann. Math. 170, 303–342 (2009)

    Article  MathSciNet  Google Scholar 

  4. M. Baake, U. Grimm, Aperiodic Order (Vol. 1) (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  5. M. Baake, M. Schlottmann, P.D. Jarvis, Quasiperiodic tilings with tenfold symmetry and equivalence with respect to local derivability. J. Phys. A Math. General 24(19), 4637 (1991)

    Google Scholar 

  6. J. Bellissard, K-theory of C -Algebras in solid state physics, in Statistical Mechanics and Field Theory: Mathematical Aspects, (Springer, Berlin, 1986), pp. 99–156

    Google Scholar 

  7. J. Bellissard, Gap Labeling Theorems for Schrödinger Operators, ed. by M. Waldschmidt, P. Moussa, J.-M. Luck, C. Itzykson. From Number Theory to Physics (Springer, Berlin, 1995)

    Google Scholar 

  8. J. Bellissard, D.J.L. Herrmann, M. Zarrouati, Hull of aperiodic solids and gap labelling theorems. Directions Math. Quasicrystals 13, 207–258 (2000)

    Article  Google Scholar 

  9. B. Blackadar, K-theory for Operator Algebras. Mathematical Sciences Research Institute Publications, vol. 5, 2nd edn. (Cambridge University Press, Cambridge, 1998)

    Google Scholar 

  10. A. Clark, L. Sadun, When shape matters: deformations of tiling spaces. Ergod. Theory Dyn. Syst. 26(1), 69–86 (2006)

    Article  MathSciNet  Google Scholar 

  11. A. Connes, Non-commutative Geometry (Academic, San Diego, 1994)

    MATH  Google Scholar 

  12. A. van Daele, K-theory for graded Banach algebras I. Quarterly J. Math. 39(2), 185–199 (1988)

    Article  MathSciNet  Google Scholar 

  13. A. van Daele, K-theory for graded Banach algebras II. Pacific J. Math. 135(2), 377–392 (1988)

    Article  MathSciNet  Google Scholar 

  14. D. Damanik, M. Embree, A. Gorodetski, Spectral properties of Schrödinger operators arising in the study of quasicrystals, in Mathematics of Aperiodic Order (Birkhäuser, Basel, 2015), pp. 307–370

    Google Scholar 

  15. K. Davidson, C*-Algebras by Example, vol. 6 (American Mathematical Society, Providence, 1996)

    MATH  Google Scholar 

  16. M.R. Herman, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations. Pub. Math. IHES 49, 5–234 (1979)

    Article  Google Scholar 

  17. A. Forrest, J. Hunton, J. Kellendonk, Topological Invariants for Projection Method Patterns (No. 758) (American Mathematical Society, Providence, 2002)

    Google Scholar 

  18. F. Gähler, Computer code, private communication

    Google Scholar 

  19. F. Gähler, J. Hunton, J. Kellendonk, Integral cohomology of rational projection method patterns. Algebr. Geometri. Topol. 13(3), 1661–1708 (2013)

    Article  MathSciNet  Google Scholar 

  20. B.I. Halperin, Quantized Hall conductance, current carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25(4), 2185 (1982)

    Google Scholar 

  21. Y. Hatsugai, Chern number and edge states in the integer quantum Hall effect. Phys. Rev. Lett. 71(22), 3697 (1993)

    Google Scholar 

  22. N. Higson, J. Roe, Analytic K-homology (OUP Oxford, Oxford, 2000)

    MATH  Google Scholar 

  23. J. Hunton, Spaces of projection method patterns and their cohomology, in Mathematics of Aperiodic Order (Birkhäuser, Basel, 2015), pp. 105–135

    Google Scholar 

  24. S. Jitomirskaya, Metal-insulator transition for the almost Mathieu operator. Ann. Math. 150, 1159–1175 (1999)

    Article  MathSciNet  Google Scholar 

  25. P. Kalugin, Cohomology of quasiperiodic patterns and matching rules. J. Phys. A Math. General 38(14), 3115 (2005)

    Google Scholar 

  26. J. Kellendonk, Noncommutative geometry of tilings and gap labelling. Rev. Math. Phys. 7(07), 1133–1180 (1995)

    Article  MathSciNet  Google Scholar 

  27. J. Kellendonk, Pattern-equivariant functions and cohomology. J. Phys. A Math. General 36(21), 5765 (2003)

    Google Scholar 

  28. J. Kellendonk, Pattern equivariant functions, deformations and equivalence of tiling spaces. Ergod. Theory Dynam. Syst. 28(4), 1153–1176 (2008)

    Article  MathSciNet  Google Scholar 

  29. J. Kellendonk, On the C -algebraic approach to topological phases for insulators. Ann. Henri Poincaré 18(7), 2251–2300 (2017)

    Article  MathSciNet  Google Scholar 

  30. J. Kellendonk, E. Prodan, Bulk-boundary correspondence for Sturmian Kohmoto like models. Ann. Henri Poincaré 20(6), 2039–2070 (2019)

    Article  MathSciNet  Google Scholar 

  31. J. Kellendonk, I.F. Putnam, Tilings, C -algebras and K-theory, in Directions in Mathematical Quasicrystals, ed. by M. Baake, R.V. Moody. CRM Monograph Series, vol. 13 (2000) (American Mathematical Society, Providence, 1999), pp. 177–206

    Google Scholar 

  32. J. Kellendonk, S. Richard, Topological boundary maps in physics, in Perspectives in Operator Algebras and Mathematical Physics. Theta Series in Advanced Mathematics, vol. 8 (Theta, Bucharest, 2008), pp. 105–121

    Google Scholar 

  33. J. Kellendonk, T. Richter, H. Schulz-Baldes, Edge current channels and Chern numbers in the integer quantum Hall effect. Rev. Math. Phys. 14, 87–119 (2002)

    Article  MathSciNet  Google Scholar 

  34. Y. Last, Spectral theory of Sturm-Liouville operators on infinite intervals: a review of recent developments, in Sturm-Liouville Theory (Birkhäuser Basel, Basel, 2005), pp. 99–120

    Google Scholar 

  35. M. Pimsner, D. Voiculescu. Exact sequences for K-groups of certain cross products of C -algebra s. J. Op. Theory 4, 93–118 (1980)

    MathSciNet  MATH  Google Scholar 

  36. E. Prodan, H. Schulz-Baldes, Non-commutative odd Chern numbers and topological phases of disordered chiral systems. J. Funct. Analy. 271(5), 1150–1176 (2016)

    Article  MathSciNet  Google Scholar 

  37. E. Prodan, H. Schulz-Baldes, Bulk and Boundary Invariants for Complex Topological Insulators (Springer, Berlin, 2016)

    Book  Google Scholar 

  38. J. Renault, A groupoid Approach to C*-algebras (Vol. 793). (Springer, Berlin, 2006)

    Google Scholar 

  39. M. Rieffel, C -algebras associated with irrational rotations. Pacific J. Math. 93(2), 415–429 (1981)

    Article  MathSciNet  Google Scholar 

  40. M. Rordam, F. Larsen, N.J. Laustsen, An Introduction to K-theory ofC -Algebras (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  41. L.A. Sadun, Topology of Tiling Spaces (Vol. 46) (American Mathematical Society, Providence, 2008)

    Google Scholar 

  42. L. Sadun, Cohomology of Hierarchical Tilings, in Mathematics of Aperiodic Order (Birkhäuser, Basel, 2015), pp. 73–104

    Google Scholar 

  43. L. Sadun, R.F. Williams, Tiling spaces are Cantor set fiber bundles. Ergod. Theory Dyn. Syst. 23(1), 307–316 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Kellendonk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kellendonk, J. (2020). Operators, Algebras and Their Invariants for Aperiodic Tilings. In: Akiyama, S., Arnoux, P. (eds) Substitution and Tiling Dynamics: Introduction to Self-inducing Structures. Lecture Notes in Mathematics, vol 2273. Springer, Cham. https://doi.org/10.1007/978-3-030-57666-0_4

Download citation

Publish with us

Policies and ethics

Navigation