Reflected (Degenerate) Diffusions and Stationary Measures

  • Conference paper
  • First Online:
XIII Symposium on Probability and Stochastic Processes

Part of the book series: Progress in Probability ((PRPR,volume 75))

  • 263 Accesses

Abstract

These notes were written with the occasion of the XIII Symposium on Probability and Stochastic Processes at UNAM. We will introduce general reflected diffusions with instantaneous reflection when hitting the boundary. Two main tools for studying these processes are presented: the submartingale problem, and stochastic differential equations. We will see how these two complement each other. In the last sections, we will see in detail two processes to which this theory applies nicely, and uniqueness of a stationary distribution holds for them, despite the fact they are degenerate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 139.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    These notes were written for a four-lecture mini-course at the XIII Symposium on Probability and Stochastic Processes, held at the Faculty of Sciences, Universidad Nacional Autónoma de México, from December 4–8, 2017.

  2. 2.

    This is a good exercise in stochastic calculus. I recommend to follow it closely, and fill the minor gaps.

  3. 3.

    We must give credit for this compilation of applications to the authors of [28].

References

  1. Aaronson, J.: An introduction to infinite ergodic theory. In: Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997)

    Google Scholar 

  2. Atar, R., Dupuis, P.: Large deviations and queueing networks: Methods for rate function identification. Stochastic Processes Appl. 84(2), 255–296 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atar, R., Dupuis, P.: A differential game with constrained dynamics and viscosity solutions of a related HJB equation. Nonlinear Anal. 51(7), 1105–1130 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Banerjee, S., Burdzy, K., Duarte, M.: Gravitation versus Brownian motion. Annales de l’Institut Henri Poincaré, New York (2019)

    Book  MATH  Google Scholar 

  5. Bass, R.F., Burdzy, K., Chen, Z.-Q., Hairer, M.: Stationary distributions for diffusions with inert drift. Probab. Theory Related Fields 146(1–2), 1–47 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Borkowski, D.: Chromaticity denoising using solution to the Skorokhod problem. In: Image Processing Based on Partial Differential Equations. Mathematical Vision, pp. 149–161. Springer, Berlin (2007)

    Google Scholar 

  7. Burdzy, K.: Multidimensional Brownian excursions and potential theory. In: Pitman Research Notes in Mathematics Series, vol. 164. Longman Scientific and Technical, Harlow (1987)

    Google Scholar 

  8. Costantini, C.: The Skorohod oblique reflection problem in domains with corners and application to stochastic differential equations. Probab. Theory Related Fields 91(1), 43–70 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duarte, M.A.: Spinning Brownian motion. Stochastic Process. Appl. 125(11), 4178–4203 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dupuis, P., Ishii, H.: SDEs with oblique reflection on nonsmooth domains. Ann. Probab. 21(1), 554–580 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dupuis, P., Ramanan, K.: A skorokhod problem formulation and large deviation analysis of a processor sharing model. Queueing Syst. 28(1), 109–124 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dupuis, P., Ramanan, K.: A multiclass feedback queueing network with a regular skorokhod problem. Queueing Syst. 36(4), 327–349 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ethier, S.N., Kurtz, T.G.: Markov processes. In: Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986). Characterization and convergence

    Google Scholar 

  14. Evans, L.C.: Partial differential equations. In: Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

    Google Scholar 

  15. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. In: Classics in Mathematics. Springer, Berlin (2001). Reprint of the 1998 edition

    Google Scholar 

  16. Harrison, J.M.: The diffusion approximation for tandem queues in heavy traffic. Adv. Appl. Probab. 10(4), 886–905 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  17. Harrison, J.M., Williams, R.J.: Brownian models of open queueing networks with homogeneous customer populations. Stochastics 22(2), 77–115 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Harrison, J.M., Landau, H.J., Shepp, L.A.: The stationary distribution of reflected Brownian motion in a planar region. Ann. Probab. 13(3), 744–757 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iglehart, D.L., Whitt, W.: Multiple channel queues in heavy traffic I. Adv. Appl. Probab. 2(1), 150–177 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ikeda, N., Watanabe, S.: Stochastic differential equations and diffusion processes. In: North-Holland Mathematical Library, vol. 24, 2nd edn. North-Holland, Amsterdam (1981)

    Google Scholar 

  21. Kang, W., Ramanan, K.: Characterization of stationary distributions of reflected diffusions. Ann. Appl. Probab. 24(4), 1329–1374, 08 (2014)

    Google Scholar 

  22. Karatzas, I., Shreve, S.E.: Brownian motion and stochastic calculus. In: Graduate Texts in Mathematics, vol. 113, 2nd edn. Springer, New York (1991)

    Google Scholar 

  23. Kingman, J.F.C.: On queues in heavy traffic. J. R. Stat. Soc. Ser. B (Methodol.) 24(2), 383–392 (1962)

    Google Scholar 

  24. Knight, F.B.: On the path of an inert object im**ed on one side by a Brownian particle. Probab. Theory Related Fields 121(4), 577–598 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kruk, L.: Optimal policies for n-dimensional singular stochastic control problems I. The Skorokhod problem. SIAM J. Control Optim. 38(5), 1603–1622 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lions, P.-L., Sznitman, A.-S.: Stochastic differential equations with reflecting boundary conditions. Commun. Pure Appl. Math. 37(4), 511–537 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  27. Maisonneuve, B.: Exit systems. Ann. Probab. 3(3), 399–411 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nyström, K., Önskog, T.: The Skorohod oblique reflection problem in time-dependent domains. Ann. Probab. 38(6), 2170–2223 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ramanan, K.: Reflected diffusions defined via the extended Skorokhod map. Electron. J. Probab. 11(36), 934–992 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ramanan, K., Reiman, M.I.: Fluid and heavy traffic diffusion limits for a generalized processor sharing model. Ann. Appl. Probab. 13(1), 100–139 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ramanan, K., Reiman, M.I.: The heavy traffic limit of an unbalanced generalized processor sharing model. Ann. Appl. Probab. 18(1), 22–58 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ramasubramanian, S.: A subsidy-surplus model and the Skorokhod problem in an orthant. Math. Oper. Res. 25(3), 509–538 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ramasubramanian, S.: An insurance network: Nash equilibrium. Insurance Math. Econom. 38(2), 374–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Reiman, M.I.: Open queueing networks in heavy traffic. Math. Oper. Res. 9(3), 441–458 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  35. Revuz, D., Yor, M.: Continuous martingales and Brownian motion. In: Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 293, 2nd edn. Springer, Berlin (1994)

    Google Scholar 

  36. Robert, P.: Stochastic networks and queues. In: Applications of Mathematics (New York), vol. 52, French edn. Springer, Berlin (2003). Stochastic Modelling and Applied Probability

    Google Scholar 

  37. Ross, S.M.: Introduction to probability models, 11 edn. Elsevier/Academic Press, Amsterdam (2014)

    MATH  Google Scholar 

  38. Saisho, Y.: Mutually repelling particles of m types. In: Probability Theory and Mathematical Statistics (Kyoto, 1986). Lecture Notes in Mathematical, vol. 1299, pp. 444–453. Springer, Berlin (1988)

    Google Scholar 

  39. Saisho, Y.: On the equation describing the random motion of mutually reflecting molecules. Proc. Japan Acad. Ser. A Math. Sci. 67(9), 293–298 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Saisho, Y.: A model of the random motion of mutually reflecting molecules in R d. Kumamoto J. Math. 7, 95–123 (1994)

    MathSciNet  MATH  Google Scholar 

  41. Sinaı̆, Y.G.: Topics in ergodic theory. In: Princeton Mathematical Series, vol. 44. Princeton University, Princeton (1994)

    Google Scholar 

  42. Soner, H.M., Shreve, S.E.: Regularity of the value function for a two-dimensional singular stochastic control problem. SIAM J. Control Optim. 27(4), 876–907 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  43. Stroock, D.W., Varadhan, S.R.S.: Diffusion processes with boundary conditions. Commun. Pure Appl. Math. 24, 147–225 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ventcel′, A.D.: On boundary conditions for multi-dimensional diffusion processes. Theor. Probab. Appl. 4, 164–177 (1959)

    Google Scholar 

  45. Weiss, A.A.: Invariant measures of diffusion processes on domains with boundaries. ProQuest LLC, Ann Arbor (1981). Thesis (Ph.D.)–New York University

    Google Scholar 

  46. White, D.: Processes with inert drift. Electron. J. Probab. 12(55), 1509–1546 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am very grateful for the opportunity to speak at the XIII Symposium of Probability and Stochastic Processes. We thank the organizers at UNAM for the invitation, and for hosting an amazing conference.

We thank the support from Proyecto FONDECYT 11160591, and NĂşcleo Milenio NC130062.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Duarte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duarte, M. (2020). Reflected (Degenerate) Diffusions and Stationary Measures. In: López, S.I., Rivero, V.M., Rocha-Arteaga, A., Siri-Jégousse, A. (eds) XIII Symposium on Probability and Stochastic Processes. Progress in Probability, vol 75. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-57513-7_1

Download citation

Publish with us

Policies and ethics

Navigation