Climatic Influence on Volcanic Landslides

  • Chapter
  • First Online:
Volcanic Debris Avalanches

Part of the book series: Advances in Volcanology ((VOLCAN))

  • 951 Accesses

Abstract

Volcanic landslides are controlled by a combination of magmatic, tectonic and surficial processes, the last of which is predominantly influenced by climate. In this chapter, we consider the influences of present and geologically recent climates on the occurrence of volcanic landslides. We begin by summarizing Quaternary climatic variability to illustrate the wide range of conditions and rates of change experienced by modern edifices. A focus on geologically recent volcanoes is prudent because both their morphologies and evidence of the climatic conditions affecting them are typically better preserved; pre-Quaternary climates similarly affected edifices that are now largely lost from the geomorphic record. We then review the climatic factors that condition and possibly trigger volcanic landslides, the challenges in dating landslides and climatic changes, and the difficulties in determining triggers of volcanic landslides. Finally, case studies of present and past climate influences on volcanic landslides collected from scientific literature–covering both subaerial and coastal settings–illustrate several key points: edifice collapses were numerous at the end of the last glaciation; current glacial retreat is conditioning volcanic slope failure in some specific settings; shallow landslides in volcanic environments appear to be increasing due to changes in weather extremes; and sea level fluctuation plays a role in volcanic island collapses. As knowledge on climate variability, volcanic, and surficial processes progresses, the understanding of how climate and its changes affect volcanic landslides will further improve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ablay G, Hurlimann M (2000) Evolution of the north flank of Tenerife by recurrent giant landslides. J Volcanol Geotherm Res 103(1–4):135–159

    Google Scholar 

  • Arnell NW, Gosling SN (2013) The impacts of climate change on river flow regimes at the global scale. J Hydrol 486:351–364

    Article  Google Scholar 

  • Begét JE, Kienle J (1992) Cyclic formation of debris avalanches at Mount St Augustine volcano. Nature 359:710–713

    Google Scholar 

  • Berger AL (1992) Astronomical theory of Paleoclimates and the last glacial-interglacial cycle. Quat Sci Rev 11:571–581

    Article  Google Scholar 

  • Blahut J, Balek J, Klime J, Rowberry M, Kus M, Kalina J (2019) A comprehensive global database of giant landslides on volcanic islands. Landslides 16:2045–2052. https://doi.org/10.1007/s10346-019-01275-8

    Article  Google Scholar 

  • Borgatti L, Soldati M (2010) Landslides as a geomorphological proxy for climate change: a record from the Dolomites (northern Italy). Geomorphol 120:56–64

    Article  Google Scholar 

  • Boulesteix T, Hildenbrand A, Soler V, Quidelleur X, Gillot PY (2013) Coeval giant landslides in the Canary Islands: Implications for global, regional and local triggers of giant flank collapses on oceanic volcanoes. J Volcanol Geotherm Res 57:90–98

    Article  Google Scholar 

  • Bovis M, Jakob M (1999) The role of debris supply conditions in predicting debris flow activity. Earth Surf Process Landforms 24:1039–1054

    Article  Google Scholar 

  • Bradley RS (2014) Paleoclimatology: reconstructing climates of the quaternary, 3rd edn. Academic Press, 696 p. https://doi.org/10.1016/C2009-0-18310-1

  • Brooks SM, Crozier MJ, Glade TW, Anderson MG (2004) Towards establishing climatic thresholds for slope instability: Use of a physically-based combined soil hydrology-slope stability model. Pure Appl Geophys 161:881–905

    Article  Google Scholar 

  • Brunet M, Le Friant A, Boudon G, Lafuerza S, Talling P, Hornbach M, Ishizuka O, Lebas E, Guyard H, Party IE (2015) Composition, geometry, and emplacement dynamics of a large volcanic island landslide offshore Martinique: from volcano flank-collapse to seafloor sediment failure? Geochem Geophys Geosyst 18:1541–1576

    Google Scholar 

  • Burns SF, Pirot R, Williams K, Sobieschezk S (2015) Massive Debris flow event on Pacific Northwest Volcanoes, USA, November 2006: causes, effects and relationship to climate change. In: Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (eds) Engineering geology for society and territory 2: landslide processes, pp 1–2177

    Google Scholar 

  • Capra L (2006) Abrupt climatic changes as triggering mechanisms of massive volcanic collapses. J Volcanol Geotherm Res 155:329–333

    Article  Google Scholar 

  • Capra L, Bernal JP, Carrasco-Núñez G, Roverato M (2013) Climatic fluctuations as a significant contributing factor for volcanic collapses. Evidence from Mexico during the Late Pleistocene. Glob Planet Change 100:194–203

    Article  Google Scholar 

  • Carey S, Morelli D, Sigurdsson H, Bronto S (2001) Tsunami deposits from major explosive eruptions: an example from the 1883 eruption of Krakatau. Geology 29:347–350

    Article  Google Scholar 

  • Cecchi E, van Wyk de Vries B, Lavest J-M, (2004) Flank spreading and collapse of weak-cored volcanoes. Bull Volcanol 67:72–91

    Article  Google Scholar 

  • Cerling TE, Craig H (1994) Geomorphology and in-situ cosmogenic isotopes. Ann Rev Earth Planet Sci 22:273–317

    Article  Google Scholar 

  • Chirico GB, Borga M, Tarolli P, Rigon R, Preti F (2013) Role of Vegetation on Slope Stability under Transient Unsaturated Conditions. Procedia Environ Sci 19:932–941

    Article  Google Scholar 

  • Christanto N, Hadmoko DS, Western CJ, Lavigne F, Sartohadi J, Setiawan MA (2009) Characteristic and behavior of rainfall induced landslides in Java Island, Indonesia: an overview. Geophys Res Abstr EGU Gen Assem 11:4069

    Google Scholar 

  • Church M, Ryder JM (1972) Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol Soc Am Bull 83:3059–3072

    Article  Google Scholar 

  • Cinco TA, de Guzman RG, Ortiz AMD, Delfino RJP, Lasco RD, Hilario FD, Juanillo EL, Barba R, Ares ED (2016) Observed trends and impacts of tropical cyclones in the Philippines. Int J Climatol 36:4638–4650

    Article  Google Scholar 

  • Clague JJ, Huggel C, Korup O, Mcguire B (2012) Climate Change and Hazardous Processes in High Mountains. Rev La Asoc Geol Argent 69:328–338

    Google Scholar 

  • Clague JJ, James TS (2002) History and isostatic effects of the last ice sheet in southern British Columbia. Quat Sci Rev 21:71–87

    Article  Google Scholar 

  • Coe JA (2016) Landslide hazards and climate change: a perspective from the United States: Chapter 14. Slope Saf Prep Impact Clim Change 479–523

    Google Scholar 

  • Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124:260–267

    Article  Google Scholar 

  • Day SJ, Carracedo JC, Guillou H, Gravestock P (1999) Recent structural evolution of the Cumbre Vieja volcano, La Palma, Canary Islands: volcanic rift zone reconfiguration as a precursor to volcano flank instability? J Volcanol Geotherm Res 94:135–167

    Article  Google Scholar 

  • De Blasio FV, Elverhøi A (2008) A model for frictional melt production beneath large rock avalanches. J Geophys Res Earth Surf 113:1–13

    Article  Google Scholar 

  • Decaulne A, Sæmundsson P, Pétursson O (2005) Debris flow triggered by rapid snowmelt: a case study in the Gleidarhjalli area, northwestern Iceland. Geogr Ann Ser A Phys Geogr 87:487–500

    Article  Google Scholar 

  • Deeming KR, McGuire B, Harrop P (2010) Climate forcing of volcano lateral collapse: evidence from Mount Etna, Sicily. Philos Trans A Math Phys Eng Sci 368:2559–2577

    Google Scholar 

  • Deline P, Gruber S, Delaloye R, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, McColl S, Ravanel L, Schoeneich P (2015) Ice loss and slope stability in high-mountain regions. In: Shroder JF, Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks and disasters. Academic Press, Boston, pp 521–561

    Chapter  Google Scholar 

  • Deline P, Gruber S, Delaloye R, Fischer L, Geertsema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, McColl S, Ravanel L, Schoeneich P (2015) Chapter 15—ice loss and slope stability in high-mountain regions. In: Shroder JF, Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks and disasters. Academic Press, Boston, pp 521–561. https://doi.org/10.1016/B978-0-12-394849-6.00015-9

  • Dirksen O, van den Bogaard C, Danhara T, Diekmann B (2011) Tephrochronological investigation at Dvuh-yurtochnoe lake area, Kamchatka: numerous landslides and lake tsunami, and their environmental impacts. Quat Int 246:298–311

    Article  Google Scholar 

  • Draebing D, Haberkorn A, Krautblatter M, Kenner R, Phillips M (2016) Thermal and mechanical responses resulting from spatial and temporal snow cover variability in permafrost rock slopes, Steintaelli, Swiss Alps. Permafr Periglac Process 28:140–157. https://doi.org/10.1002/ppp.1921

    Article  Google Scholar 

  • Draebing D, Krautblatter M, Hoffmann T (2017) Thermo-cryogenic controls of fracture kinematics in permafrost rockwalls. Geophys Res Lett 44:3535–3544

    Article  Google Scholar 

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332

    Article  Google Scholar 

  • Dunai TJ (2010) Cosmogenic nuclides principles, concepts and applications in the earth surface sciences. Cambridge University Press, Cambridge, 187 p. doi: https://doi.org/10.1017/CBO9780511804519

  • Ehlers J, Gibbard PL, Philip L (2004) Quaternary glaciations: extent and chronology. Amsterdam, Elsevier, 488 p

    Google Scholar 

  • Ellis R, Palmer M (2016) Modulation of ice ages via precession and dust-albedo feedbacks. Geosci Front 7:891–909

    Article  Google Scholar 

  • Evans D, King EL, Kenyon NH, Brett C, Wallis D (1996) Evidence for long-term instability in the Storegga Slide region off western Norway. Mar Geol 130:281–292

    Article  Google Scholar 

  • Evans SG, Brooks GR (1991) Prehistoric debris avalanches from Mount Cayley volcano, British Columbia. Can J Earth Sci 28:1365–1374

    Article  Google Scholar 

  • Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128

    Article  Google Scholar 

  • Friant A, Al E (2015) Submarine record of volcanic island construction and collapse in the Lesser Antilles arc: first scientific drilling of submarine volcanic island landslides by IODP Expedition 340. Geochem Geophys Geosyst 18:1–10

    Google Scholar 

  • Friele PA, Clague JJ (2009) Paraglacial geomorphology of quaternary volcanic landscapes in the southern Coast Mountains, British Columbia. Geol Soc Lond Spec Publ 320:219–233

    Article  Google Scholar 

  • Friele PA (2012) Volcanic Landslide Risk Management, Lillooet River Valley, BC: Start of north and south FSRs to Meager Confluence, Meager Creek and Upper Lillooet River, 24p

    Google Scholar 

  • Friele PA, Clague JJ (2004) Large Holocene landslides from Pylon Peak, southwestern British Columbia. Can J Earth Sci 41(2):165–182

    Google Scholar 

  • Friele PA, Ekes C, Hickin EJ (1999) Evolution of Cheekye fan, Squamish, British Columbia: Holocene sedimentation and implications for hazard assessment. Can J Earth Sci 36:2023–2031

    Article  Google Scholar 

  • Friele PA, Jakob M, Clague JJ (2008) Hazard and risk from large landslides from Mount Meager volcano, British Columbia, Canada. Georisk: Assess Manag Risk Eng Syst Geohazards 2:48–64

    Google Scholar 

  • García-Herrera R, Ribera P, Hernández E, Gimeno L (2005) Typhoons in the Philippine Islands, 1566–1900. Clim Res 29:85–90

    Google Scholar 

  • Garcia MO (1996) Turbidites from slope failure on Hawaiian volcanoes. Geol Soc Spec Publ 110:281–294

    Article  Google Scholar 

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth-Sci Rev. https://doi.org/10.1016/j.earscirev.2016.08.011

    Article  Google Scholar 

  • Gleckler PJ, Wigley TML, Santer BD, Gregory JM, Achutarao K, Taylor KE (2006) Krakatoa’s signature persists in the ocean. Nature 439:675

    Article  Google Scholar 

  • Goldstrand PM (1998) Provenance and sedimentologic variations of turbidite and slump deposits at Sites 955 and 956. Proc Ocean Drill Progr Sci Results 157:343–360

    Google Scholar 

  • Gosse JC, Philips F (2001) Terrestrial in situ cosmogenic nuclides: theory and application. Quat Sci Rev 20:1475–1560

    Article  Google Scholar 

  • Grämiger LM, Moore JR, Gischig VS, Ivy-Ochs S, Loew S (2017) Beyond debuttressing: Mechanics of paraglacial rock slope damage during repeat glacial cycles. J Geophys Res Earth Surf 122:1004–1036

    Article  Google Scholar 

  • Haflidason H, Lien R, Sejrup HP, Forsberg CF, Bryn P (2005) The dating and morphometry of the Storegga Slide. Mar Pet Geol 22:123–136

    Article  Google Scholar 

  • Handwerger AL, Huang MH, Fielding EJ, Booth AM, Bürgmann R (2019) A shift from drought to extreme rainfall drives a stable landslide to catastrophic failure. Sci Rep 9:1–12

    Article  Google Scholar 

  • Holcomb RT, Searle RC (1991) Large landslides from oceanic volcanoes. Mar Geotechnol 10:19–32

    Article  Google Scholar 

  • Holm K, Bovis MJ, Jakob M (2004) The landslide response of alpine basins to post-little ice age glacial thinning and retreat in southwestern British Columbia. Can J Earth Sci 44:313–334

    Google Scholar 

  • Hooghiemstra H, Flantua SGA (2019) Colombia in the Quaternary: An overview of environmental and climatic change. In: Gómez J, Pinilla–Pachon AO (eds) The geology of Colombia, Volume 4 Quaternary. Servicio Geológico Colombiano, Publicaciones Geológicas Especiales 38, 52 p. Bogotá. https://doi.org/10.32685/pub.esp.38.2019.02n

  • Huggel C (2009) Recent extreme slope failures in glacial environments: effects of thermal perturbation. Quat Sci Rev 28:1119–1130

    Google Scholar 

  • Huggel C, Caplan-Auerbach J, Waythomas CF, Wessels RL (2007) Monitoring and modeling ice-rock avalanches from ice-capped volcanoes: a case study of frequent large avalanches on Iliamna Volcano, Alaska. J Volcanol Geotherm Res 168:114–136

    Article  Google Scholar 

  • Huggel C, Clague JJ, Korup O (2012) Is climate change responsible for changing landslide activity in high mountains? Earth Surf Process Landforms 37:77–91

    Article  Google Scholar 

  • Hunt JE, Cassidy M, Talling PJ (2018) Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions. Sci Rep 8:1–11

    Article  Google Scholar 

  • Hunt JE, Wynn RB, Masson DG, Talling PJ, Teagle DAH (2011) Sedimentological and geochemical evidence for multistage failure of volcanic island landslides: a case study from Icod landslide on north Tenerife, Canary Islands. Geochem Geophys Geosyst 12:1–36

    Article  Google Scholar 

  • Hunt JE, Wynn RB, Talling PJ, Masson DG (2013) Multistage collapse of eight western Canary Island landslides in the last 1.5 Ma: sedimentological and geochemical evidence from subunits in submarine flow deposits. Geochem Geophys Geosyst 14:2159–2181

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014 synthesis report, contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva. Switzerland, 151 pp

    Google Scholar 

  • Jakob M, Friele P (2010) Frequency and magnitude of debris flows on Cheekye River, British Columbia. Geomorphology 114:382–395

    Google Scholar 

  • Jellinek AM, Manga M, Saar MO (2004) Did melting glaciers cause volcanic eruptions in eastern California? Probing the mechanics of dike formation. J Geophys Res Solid Earth 109:1–10

    Article  Google Scholar 

  • Jicha BR, Rhodes JM, Singer BS, Garcia MO (2012) 40Ar/39Ar geochronology of submarine Mauna Loa volcano. Hawaii. J Geophys Res Solid Earth 117(1–16):B09204. https://doi.org/10.1029/2012JB009373,2012

    Article  Google Scholar 

  • Jouzel J, Masson-Delmotte V, Cattani O, Dreyfus G, Falourd S, Hoffmann G, Minster B, Nouet J, Barnola JM, Chappellaz J, Fischer H, Gallet JC, Johnsen S, Leuenberger M, Loulergue L, Luethi D, Oerter H, Parrenin F, Raisbeck G, Raynaud D, Schilt A, Schwander J, Selmo E, Souchez R, Spahni R, Stauffer B, Steffensen JP, Stenni B, Stocker TF, Tison JL, Werner M, Wolff EW (2007) Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317:793–796

    Article  Google Scholar 

  • Keating BH, McGuire WJ (2004) Instability and structural failure at volcanic ocean islands and the climate change dimension. Adv Geophys 47:175–271

    Article  Google Scholar 

  • Keating BH, McGuire WJ (2000) Island edifice failures and associated tsunami hazards. Pure Appl Geophys 157:899–955

    Article  Google Scholar 

  • Kelfoun K, Giachetti T, Labazuy P (2010) Landslide-generated tsunamis at Réunion Island. J Geophys Res Earth Surf 115:1–17 F04012. doi: 10.1029/2009JF001381

    Google Scholar 

  • Kerle N, van Wyk de Vries B (2001) The 1998 debris avalanche at Casita volcano, Nicaragua—investigation of structural deformation as the cause of slope instability using remote sensing. J Volcanol Geotherm Res 105(1–2):49–63

    Google Scholar 

  • Kim SD, Jeung SJ, Kim BS (2018) Prediction of debris flows in the Korean Oship river based on climate change scenarios. Geomat Nat Hazards Risk 9:703–719

    Article  Google Scholar 

  • Kokelaar P, Romagnoli C (1995) Sector collapse, sedimentation and clast population evolution at an active island-arc volcano: Stromboli, Italy. Bull Volcanol 57:240–262

    Article  Google Scholar 

  • Korup O (2012) Landslides and sediment flux: a quaternary perspective. Quat Int 279–280:253

    Article  Google Scholar 

  • Krastel S, Schmincke H-U, Jacobs CL, Rihm R, Le Bas TP, Alibés B (2001) Submarine landslides around the Canary Islands. J Geophys Res Solid Earth 106:3977–3997

    Article  Google Scholar 

  • Kuijpers A, Nielsen T, Akhmetzhanov A, De Haas H, Kenyon NH, Van Weering TCE (2001) Late quaternary slope instability on the Faeroe margin: mass flow features and timing of events. Geo-Marine Lett 20:149–159

    Article  Google Scholar 

  • Labazuy P (1996) Recurrent landslides events on the submarine flank of Piton de la Fournaise volcano (Reunion Island). Geol Soc Spec Publ 110:295–306

    Article  Google Scholar 

  • Lang A, Moya J, Corominas J, Schrott L, Dikau R (1999) Classic and new dating methods for assessing the temporal occurrence of mass movements. Geomorphology 30:33–52

    Article  Google Scholar 

  • Lavallée Y, Mitchell TM, Heap MJ, Vasseur J, Hess KU, Hirose T, Dingwell DB (2012) Experimental generation of volcanic pseudotachylytes: constraining rheology. J Struct Geol 38:222–233

    Article  Google Scholar 

  • Legros F, Cantagrel JM, Devouard B (2000) Pseudotachylyte (frictionite) at the base of the Arequipa volcanic landslide deposit (Peru): implications for emplacement mechanisms. J Geol 108:601–611

    Article  Google Scholar 

  • Lénat JF, Vincent P, Bachélery P (1989) The off-shore continuation of an active basaltic volcano: Piton de la Fournaise (Réunion Island, Indian Ocean); structural and geomorphological interpretation from sea beam map**. J Volcanol Geotherm Res 36(1–3): 1–9, 11, 13, 15, 17, 19, 21, 23, 25–36. https://doi.org/10.1016/0377-0273(89)90003-6PAGES

  • Lipman PW, Normark WR, Moore JG, Wilson JB, Gutmacher CE (1988) The giant submarine Alika debris slide, Mauna Loa. Hawaii. J Geophys Res 93:4279–4299

    Article  Google Scholar 

  • Lisiecki LE, Raymo ME (2005) A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20:1–17

    Google Scholar 

  • Lomoschitz A, Meco J, Corominas J (2002) The Barranco de Tirajana basin, Gran Canaria (Spain). A major erosive landform caused by large landslides. Geomorphology 42:117–130

    Article  Google Scholar 

  • Lunt DJ, Valdes PJ, Haywood A, Rutt IC (2008) Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation. Clim Dyn 30:1–18

    Article  Google Scholar 

  • Lyon B, Camargo SJ (2009) The seasonally-varying influence of ENSO on rainfall and tropical cyclone activity in the Philippines. Clim Dyn 32:125–141

    Article  Google Scholar 

  • Macklin MG, Lewin J, Woodward JC (2012) The fluvial record of climate change. Philos Trans Roy Soc A Math Phys Eng Sci 370:2143–2172

    Article  Google Scholar 

  • Masson DG (1996) Catastrophic collapse of the volcanic island of Hierro 15 ka ago and the history of landslides in the Canary Islands. Geology 24:231–234

    Article  Google Scholar 

  • Masson DG, Harbitz CB, Wynn RB, Pedersen G, Løvholt F (2006) Submarine landslides: processes, triggers and hazard prediction. Philos Trans Roy Soc A Math Phys Eng Sci 364:2009–2039

    Article  Google Scholar 

  • Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth-Sci Rev 57:1–35

    Article  Google Scholar 

  • Mathews WH (1952) Mount Garibaldi, a supraglacial Pleistocene volcano in southwestern British Columbia. Am J Sci 250:81–103 doi:https://doi.org/10.2475/ajs.250.2.81

  • McColl ST, Davies TRH, McSaveney MJ (2010) Glacier retreat and rock-slope stability: debunking debuttressing. In: Deleg pap geological act 11th congress international association engineering geology environment. Auckland, Aotearoa, 5–10 Sept 2010. Auckland, New Zeal, pp 467–474

    Google Scholar 

  • McLaren SJ, Rowe PJ (1996) The reliability of uranium-series mollusc dates from the western Mediterranean basin. Quat Sci Rev 15:709–717

    Article  Google Scholar 

  • McMurtry GM, Fryer GJ, Tappin DR, Wilkinson IP, Williams M, Fietzke J, Garbe-Schoenberg D, Watts P (2004) Megatsunami deposits on Kohala volcano, Hawaii, from flank collapse of Mauna Loa. Geology 32:741–744

    Article  Google Scholar 

  • McMurtry GM, Herrero-Bervera E, Cremer MD, Smith JR, Resig J, Sherman C, Torresan ME (1999) Stratigraphic constraints on the timing and emplacement of the Alika 2 giant Hawaiian submarine landslide. J Volcanol Geotherm Res 94:35–58

    Article  Google Scholar 

  • Mercier D, Cossart E, Decaulne A, Feuillet T, Jónsson HP, Sæmundsson T (2013) The Höfahólar rock avalanche (sturzström): chronological constraint of paraglacial landsliding on an Icelandic hillslope. Holocene 23:432–446

    Article  Google Scholar 

  • Miller GH, Geirsdóttir Á, Zhong Y, Larsen DJ, Otto-Bliesner BL, Holland MM, Bailey DA, Refsnider KA, Lehman SJ, Southon JR, Anderson C, Björnsson H, Thordarson T (2012) Abrupt onset of the Little Ice Age triggered by volcanism and sustained by sea-ice/ocean feedbacks. Geophys Res Lett 39:1–5

    Article  Google Scholar 

  • Moore GJ, Fornari DJ (1984) Drowned reefs as indicators of the rate of subsidence of the island of Hawaii. J Geol 92(6):752–759

    Article  Google Scholar 

  • Moore JG, Clague DA (1992) Volcano growth and evolution of the island of Hawaii. Geol Soc Am Bull 104:1471–1484

    Article  Google Scholar 

  • Morgan JK, Moore GF, Clague DA (2003) Slope failure and volcanic spreading along the submarine south flank of Kilauea volcano, Hawaii. J Geophys Res Solid Earth 108:1–24 B9, 2415. doi:https://doi.org/10.1029/2003JB002411,

  • Morino C, Conway SJ, Sæmundsson Þ, Kristinn Helgason J, Hillier J, Butcher FEG, Balme MR, Jordan C, Argles T (2019) Molards as an indicator of permafrost degradation and landslide processes. Earth Planet Sci Lett 516:136–147

    Article  Google Scholar 

  • Murray-Wallace CV, Woodroffe CD (2014) Quaternary sea-level changes : a global perspective. Cambridge University Press, Cambridge; New York: 504

    Google Scholar 

  • Nishimura Y (2008) Volcanism-Induced Tsunamis and Tsunamiites. In: Shiki T, Tsuji Y, Yamazaki T, Minoura KBT-T (eds) Tsunamiites. Elsevier, Amsterdam, pp 163–184. https://doi.org/10.1016/B978-0-444-51552-0.00011-4

  • Oehler JF, Lénat JF, Labazuy P (2008) Growth and collapse of the reunion island volcanoes. Bull Volcanol 70:717–742

    Article  Google Scholar 

  • Paguican EMR, Lagmay AMF, Rodolfo KS, Rodolfo RS, Tengonciang AMP, Lapus MR, Baliatan EG, Obille EC (2009) Extreme rainfall-induced lahars and dike breaching, 30 November 2006, Mayon Volcano, Philippines. Bull Volcanol 71:845–857

    Article  Google Scholar 

  • Pánek T (2015) Recent progress in landslide dating: a global overview. Prog Phys Geogr 39:168–198

    Article  Google Scholar 

  • Paris R, Bravo JJC, González MEM, Kelfoun K, Nauret F (2017) Explosive eruption, flank collapse and megatsunami at Tenerife ca. 170 ka. Nat Commun 8:1–8

    Article  Google Scholar 

  • Peres DJ, Cancelliere A (2018) Modeling impacts of climate change on return period of landslide triggering. J Hydrol 567:420–434

    Article  Google Scholar 

  • Pezzi LP, Cavalcanti IFA (2001) The relative importance of ENSO and tropical Atlantic sea surface temperature anomalies for seasonal precipitation over South America: a numerical study. Clim Dyn 17:205–212

    Article  Google Scholar 

  • Pierson TC, Daag AS, Reyes PJD, Regalado MTM, Solidum RU, Tubianosa BS (1996) Flow and deposition of posteruption hot lahars on the east side of Mount Pinatubo , July-October 1991. In: Newhall CG, Punongbayan RS (eds) Fire and mud, eruptions and lahars of Mount Pinatubo, Phillipines. USGS and PHIVOLCS, Hong Kong, pp 1–16

    Google Scholar 

  • Pillans B, Gibbard P (2012) The quaternary period. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012, 1–2: 979–1010. Elsevier. doi: https://doi.org/10.1016/B978-0-444-59425-9.00030-5

  • Pioli L, Erlund E, Johnson E, Cashman K, Wallace P, Rosi M, Delgado Granados H (2008) Explosive dynamics of violent Strombolian eruptions: the eruption of Parícutin Volcano 1943–1952 (Mexico). Earth Planet Sci Lett 271:359–368

    Article  Google Scholar 

  • Pola A, Crosta G, Fusi N, Barberini V, Norini G (2012) Influence of alteration on physical properties of volcanic rocks. Tectonophysics 566–567:67–86

    Article  Google Scholar 

  • Praetorius S, Mix A, Jensen B, Froese D, Milne G, Wolhowe M, Addison J, Prahl F (2016) Interaction between climate, volcanism, and isostatic rebound in Southeast Alaska during the last deglaciation. Earth Planet Sci Lett 452:79–89

    Article  Google Scholar 

  • Quidelleur X, Hildenbrand A, Samper A (2008) Causal link between quaternary paleoclimatic changes and volcanic islands evolution. Geophys Res Lett 35:1–5

    Article  Google Scholar 

  • Rampino MR, Self S, Fairbridge RW (1979) Can rapid climate change cause volcanic eruptions? Science 206:826–829

    Article  Google Scholar 

  • Reubens B, Poesen J, Danjon F, Geudens G, Muys B (2007) The role of fine and coarse roots in shallow slope stability and soil erosion control with a focus on root system architecture: a review. Trees—Struct Funct 21:385–402

    Article  Google Scholar 

  • Reyes AV, Froese DG, Jensen BJL (2010) Permafrost response to last interglacial warming: field evidence from non-glaciated Yukon and Alaska. Quat Sci Rev 29:3256–3274

    Article  Google Scholar 

  • Roberti G (2018) Mount Meager, a glaciated volcano in a changing cryosphere: hazards and risk challenges. Simon Fraser University, 207 p

    Google Scholar 

  • Roberti G, Ward B, van Wyk de Vries B, Friele P, Perotti L, Clague JJ, Giardino M (2018) Precursory slope distress prior to the 2010 Mount Meager landslide, British Columbia. Landslides 15:637–647

    Google Scholar 

  • Roberts NJ, Barendregt RW, Clague JJ (2018) Pliocene and Pleistocene chronostratigraphy of continental sediments underlying the Altiplano at La Paz, Bolivia. Quat Sci Rev 189:105–126

    Article  Google Scholar 

  • Roberts NJ, Barendregt RW, Clague JJ (2017) Multiple tropical Andean glaciations during a period of late Pliocene warmth. Sci Rep 7:41878. https://doi.org/10.1038/srep41878

    Article  Google Scholar 

  • Roberts NJ, McKillop R, Hermanns RL, Clague JJ, Oppikofer T (2014) Preliminary global catalogue of displacement waves from subaerial landslides BT. In Sassa K, Canuti P, Yin Y (eds) Landslide science for a safer geoenvironment. Springer International Publishing, pp 687–692

    Google Scholar 

  • Rodolfo KS, Arguden AT (1991) Rain-Lahar generation and sediment-delivery systems at Mayon Volcano, Philippines. Sediment Volcan Settings. In: Fisher RV, and Smith GA (eds) Sedimentation in volcanic settings. SEPM Special publication vol 45, pp 71–88

    Google Scholar 

  • Romagnoli C, Casalbore D, Chiocci FL, Bosman A (2009a) Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally-controlled, bilateral flank instability. Mar Geol 262:1–13

    Article  Google Scholar 

  • Romagnoli C, Kokelaar P, Casalbore D, Chiocci FL (2009b) Lateral collapses and active sedimentary processes on the northwestern flank of Stromboli volcano, Italy. Mar Geol 265:101–119

    Article  Google Scholar 

  • Rubin KH, Fletcher CH, Sherman C (2000) Fossiliferous Lana’i deposits formed by multiple events rather than a single giant tsunami. Nature 408:675–681

    Article  Google Scholar 

  • Salaorni E, Stoffel M, Tutubalina O, Chernomorets S, Seynova I, Sorg A (2017) Dendrogeomorphic reconstruction of lahar activity and triggers: Shiveluch volcano, Kamchatka Peninsula. Russia. Bull Volcanol 79:6. https://doi.org/10.1007/s00445-016-1094-4

    Article  Google Scholar 

  • Schmidt M, Dehn M (2000) Examining links between climate change and landslide activity using GCMS. In: McLaren SJ, Kniveton DR (eds) Linking climate change to land surface change. Advances in global change research, vol 6. Springer, Dordrecht https://doi.org/10.1007/0-306-48086-7_7

  • Scott KM, Vallance JW, Kerle N, Macías JL, Strauch W, Devoli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Process Landforms 30:59–79

    Article  Google Scholar 

  • Segoni S, Piciullo L, Gariano SL (2018) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15:1483–1501

    Article  Google Scholar 

  • Shackleton NJ (1987) Oxygen isotopes, ice volume and sea level. Quat Sci Rev 6:183–190

    Article  Google Scholar 

  • Shaw TA, Baldwin M, Barnes EA, Caballero R, Garfinkel CI, Hwang YT, Li C, O’Gorman PA, Rivière G, Simpson IR, Voigt A (2016) Storm track processes and the opposing influences of climate change. Nat Geosci 9:656–664

    Article  Google Scholar 

  • Singer A (1980) The paleoclimatic interpretation of clay minerals in soils and weathering profiles. Earth-Sci Rev 15:303–326

    Article  Google Scholar 

  • Sirocko F, Claussen MT, Litt Sanchez-Goni MF (2007) The climate of past interglacials, vol 7, 1st edn. Elsevier, Amsterdam, 638 p

    Google Scholar 

  • Stoffel M, Huggel C (2012) Effects of climate change on mass movements in mountain environments. Prog Phys Geogr 36:421–439

    Article  Google Scholar 

  • Stoopes GR, Sheridan MF (1992) Giant debris avalanches from the Colima volcanic complex, Mexico: implications for long-runout landslides (>100 km) and hazard assessment. Geology 20:299–302

    Article  Google Scholar 

  • Stuiver M, Polach AH (1977) Reporting of 14C data. Radiocarbon 19:355–363. https://doi.org/10.1016/j.forsciint.2010.11.013

    Article  Google Scholar 

  • Swindles GT, Watson EJ, Savov IP, Lawson IT, Schmidt A, Hooper A, Cooper CL, Connor CB, Gloor M, Carrivick JL (2017) Climatic control on Icelandic volcanic activity during the mid-Holocene. Geology 46(1):47–50

    Article  Google Scholar 

  • Teller JT, Leverington DW, Mann JD (2002) Freshwater outbursts to the oceans from glacial Lake Agassiz and their role in climate change during the last deglaciation. Quat Sci Rev 21:879–887

    Article  Google Scholar 

  • Tesi T, Muschitiello F, Smittenberg RH, Jakobsson M, Vonk JE, Hill P, Andersson A, Kirchner N, Noormets R, Dudarev O, Semiletov I, Gustafsson O (2016) Massive remobilization of permafrost carbon during post-glacial warming. Nat Commun 7:1–10

    Article  Google Scholar 

  • Thomson J, Weaver PPE (1994) An AMS radiocarbon method to determine the emplacement time of recent deep-sea turbidites. Sediment Geol 89:1–7

    Article  Google Scholar 

  • Tormey D (2010) Managing the effects of accelerated glacial melting on volcanic collapse and debris flows: Planchon-Peteroa Volcano, Southern Andes. Glob Planet Change 74:82–90

    Article  Google Scholar 

  • Trauth MH, Bookhagen B, Marwan N, Strecker MR (2003) Multiple landslide clusters record Quaternary climate changes in the northwestern Argentine Andes. Palaeogeogr Palaeoclimatol Palaeoecol 194:109–121

    Article  Google Scholar 

  • Tuffen H (2010) How will melting of ice affect volcanic hazards in the twenty-first century? Philos Trans A Math Phys Eng Sci 368:2535–2558

    Google Scholar 

  • Umbal JV, Rodolfo KS (1996) The 1991 Lahars of Southwestern Mount Pinatubo and evolution of the Lahar-Dammed Mapanuepe Lake. In: Newhall CG, Punongbayan RS (eds) Fire and mud: eruptions and Lahars of Mount Pinatubo, Philippines. USGS and PHIVOLCS, Hong Kong, pp 1–15

    Google Scholar 

  • Urlaub M, Talling PJ, Masson DG (2013) Timing and frequency of large submarine landslides: implications for understanding triggers and future geohazard. Quat Sci Rev 72:63–82

    Article  Google Scholar 

  • van Wyk de Vries B, Delcamp A (2014) Volcanic Debris Avalanches. In: Shroder F, Davies T (eds) Landslide hazards, risks, and disasters. Academic Press, Boston, pp 131–157. https://doi.org/10.1016/B978-0-12-396452-6.00005-7

  • van Wyk de Vries B, Kerle N, Petley D (1998) Sector collapse forming at Casita volcano. Nicaragua Geol (2000) 28(2):167–170

    Google Scholar 

  • van Wyk de Vries B, Kerle N, Petley D (2000) Sector collapse forming at Casita volcano, Nicaragua. Geology 28(2):167–170

    Google Scholar 

  • Walker M (2005) Quaternary dating methods. Wiley, Chichester, 304 p

    Google Scholar 

  • Ward SN, Day S (2001) Cumbre Vieja Volcano-Potential collapse and tsunami at La Palma, Canary Islands. Geophys Res Lett 28:3397–3400

    Article  Google Scholar 

  • Watt SFL, Pyle DM, Mather TA (2013) The volcanic response to deglaciation: evidence from glaciated arcs and a reassessment of global eruption records. Earth-Sci Rev 122:77–102

    Article  Google Scholar 

  • Watts AB, Masson DG (1995) A giant landslide on the north flank of Tenerife, Canary Islands. J Geophys Res 100(B12):24487–24498. doi: 10.1029/95JB02630

    Google Scholar 

  • Webb SD (1991) Ecogeography and the great American interchange. Paleobiology 17:266–280

    Google Scholar 

  • Whelan F, Kelletat D (2003) Submarine slides on volcanic islands—a source for mega-tsunamis in the quaternary. Prog Phys Geogr 27:198–216

    Article  Google Scholar 

  • Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Hungr O, Jackob M (eds) Debris-flow hazards and related phenomena Springer, Berlin, Heidelberg, pp 325–362

    Google Scholar 

  • Willeit M, Ganopolski A, Calov R, Brovkin V (2019) Mid-Pleistocene transition in glacial cycles explained by declining CO2 and regolith removal. Sci Adv 5:1–9

    Article  Google Scholar 

  • Yasuhara K, Komine H, Murakami S, Chen G, Mitani Y, Duc DM (2012) Effects of climate change on geo-disasters in coastal zones and their adaptation. Geotext Geomembranes 30:24–34

    Article  Google Scholar 

  • Yumul GP, Cruz NA, Servando NT, Dimalanta CB (2011) Extreme weather events and related disasters in the Philippines, 2004–08: A sign of what climate change will mean? Disasters 35:362–382

    Article  Google Scholar 

  • Zerathe S, Lebourg T, Braucher R, Bourlès D (2014) Mid-Holocene cluster of large-scale landslides revealed in the Southwestern Alps by 36Cl dating. Insight on an Alpine-scale landslide activity. Quat Sci Rev 90:106–127

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Lisa Borgatti and Costanza Morino for a critical review of this paper. Eventual errors or omissions are purely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gioachino Roberti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roberti, G., Roberts, N.J., Lit, C. (2021). Climatic Influence on Volcanic Landslides. In: Roverato, M., Dufresne, A., Procter, J. (eds) Volcanic Debris Avalanches. Advances in Volcanology. Springer, Cham. https://doi.org/10.1007/978-3-030-57411-6_6

Download citation

Publish with us

Policies and ethics

Navigation