• 1287 Accesses

Abstract

Transposition of the great arteries represents a group of malformations characterized by abnormal connections between the ventricles and great arteries. Discordant ventriculoarterial alignments alone (complete transposition) or combined atrioventricular and ventriculoarterial discordant alignments (congenitally corrected transposition), along with associated abnormalities, result in multiple anatomical combinations. Complete transposition complexes commonly present with cyanosis, and surgical management is required in the neonatal period. Congenitally corrected transposition complexes may not present with physiologic perturbations and hence their diagnosis is sometimes delayed. A multitude of surgical approaches has evolved over time, and successful selection of a procedure is influenced by individual anatomy. Both congenital heart defects require a fundamental understanding of anatomical and surgical details, particularly as regards their pre- as well as post-surgical assessment. This chapter details the value of transesophageal echocardiography in the most common transposition complexes, with respect to perioperative anatomic assessment, postoperative evaluation, and relevant applications in the long-term surveillance of affected patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 137.14
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 210.99
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ao Arch:

Aortic arch

Asc Ao:

Ascending aorta

ASO:

Arterial switch operation

AV:

Atrioventricular

CA:

Coronary artery

CCTGA:

Congenitally corrected transposition of the great arteries

CHD:

Congenital heart disease

CPB:

Cardiopulmonary bypass

DORV:

Double outlet right ventricle

DTG:

Deep transgastric

D-TGA:

D-looped transposition of the great arteries

IVC:

Inferior vena cava

LCA:

Left coronary artery

LMCA:

Left main coronary artery

L-TGA:

L-looped transposition of the great arteries

LV:

Left ventricle

LVOT:

Left ventricular outflow tract

ME:

Midesophageal

MPA:

Main pulmonary artery

PA:

Pulmonary artery

RCA:

Right coronary artery

RV:

Right ventricle

RVOT:

Right ventricular outflow tract

SVC:

Superior vena cava

TEE:

Transesophageal echocardiography

TG:

Transgastric

TTE:

Transthoracic echocardiography

UE:

Upper esophageal

VA:

Ventriculoarterial

VSD:

Ventricular septal defect

References

  1. De Luca A, Sarkozy A, Consoli F, et al. Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart. 2010;96:673–7.

    Article  PubMed  Google Scholar 

  2. Unolt M, Putotto C, Silvestri LM, et al. Transposition of great arteries: new insights into the pathogenesis. Front Pediatr. 2013;1:11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qureshi AM, Justino H, Heinle JS. Transposition of the great arteries. In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ Heart disease in infants, children and adolescents: including the fetus and young adult. 8th ed. Philadelphia: Wolters Kluwer; 2016. p. 1163–86.

    Google Scholar 

  4. Kyle WB, Fraser CD, Spicer D, Anderson RH, Penny DJ. Transposition. In: Wernovsky G, Anderson RH, Kumar K, et al., editors. Anderson’s Pediatric cardiology. 4th ed. Philadelphia: Elsevier Health Sciences; 2019. p. 675–96.

    Google Scholar 

  5. Ramsdell AF. Left-right asymmetry and congenital cardiac defects: getting to the heart of the matter in vertebrate left-right axis determination. Dev Biol. 2005;288:1–20.

    Article  PubMed  CAS  Google Scholar 

  6. Goldmuntz E, Woyciechowski S, Renstrom D, Lupo PJ, Mitchell LE. Variants of folate metabolism genes and the risk of conotruncal cardiac defects. Circ Cardiovasc Genet. 2008;1:126–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Lisowski LA, Verheijen PM, Copel JA, et al. Congenital heart disease in pregnancies complicated by maternal diabetes mellitus. An international clinical collaboration, literature review, and meta-analysis. Herz. 2010;35:19–26.

    Article  PubMed  Google Scholar 

  8. Pierpont M, Basson C, Benson D, et al. Genetic basis for congenital heart defects: current knowledge: a scientific statement from the American Heart Association Congenital Cardiac Defects Committee, Council on Cardiovascular Disease in the Young: Endorsed by the American Academy of Pediatrics. Circulation. 2007;115:3015–38.

    Article  PubMed  Google Scholar 

  9. Pradat P, Francannet C, Harris JA, Robert E. The epidemiology of cardiovascular defects, part I: a study based on data from three large registries of congenital malformations. Pediatr Cardiol. 2003;24:195–221.

    Article  PubMed  CAS  Google Scholar 

  10. van der Linde D, Konings EE, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011;58:2241–7.

    Article  PubMed  Google Scholar 

  11. Sun HY, Proudfoot JA, McCandless RT. Prenatal detection of critical cardiac outflow tract anomalies remains suboptimal despite revised obstetrical imaging guidelines. Congenit Heart Dis. 2018;13:748–56.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mahle WT, Newburger JW, Matherne GP, et al. Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the American Heart Association and American Academy of Pediatrics. Circulation. 2009;120:447–58.

    Article  PubMed  Google Scholar 

  13. Liebman J, Cullum L, Belloc NB. Natural history of transposition of the great arteries. Anatomy and birth and death characteristics. Circulation. 1969;40:237–62.

    Article  PubMed  CAS  Google Scholar 

  14. Villafañe J, Lantin-Hermoso MR, Bhatt AB, et al. D-transposition of the great arteries: the current era of the arterial switch operation. J Am Coll Cardiol. 2014;64:498–511.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Van Mierop LH, Alley RD, Kausel HW, Stranahan A. Pathogenesis of transposition complexes. I. Embryology of the ventricles and great arteries. Am J Cardiol. 1963;12:216–25.

    Article  Google Scholar 

  16. Asami I. Partitioning of the arterial end of the embryonic heart. In: Van Praagh R, Takao A, editors. Etiology and morphogenesis of congenital heart disease. New York: Futura; 1980. p. 41–51.

    Google Scholar 

  17. Lev M. The conotruncus. I. Its normal inversion and conus absorption. Circulation. 1972;46:634–6.

    Article  PubMed  CAS  Google Scholar 

  18. Van Praagh R. The segmental approach to diagnosis of congenital heart disease. In: Bergsma D, editor. Birth Defects: Original Article Series. National Foundation—March of Dimes. Batimore: Williams & Wilkins; 1972. p. 4–23.

    Google Scholar 

  19. Jaggers JJ, Cameron DE, Herlong JR, Ungerleider RM. Congenital heart surgery nomenclature and database project: transposition of the great arteries. Ann Thorac Surg. 2000;69:S205–35.

    Article  PubMed  CAS  Google Scholar 

  20. Miyake T, Yokoyama T, Shirotani H. Transposition of the great arteries with posterior aorta: detection by two-dimensional echocardiography. Pediatr Cardiol. 1990;11:102–4.

    Article  PubMed  CAS  Google Scholar 

  21. Kouchoukos NT. Congenitally corrected transposition of the the great arteries and other forms of atrioventricular discordant connection. In: Kouchoukos NT, Blackstone EH, Hanley FL, Kirklin JK, editors. Cardiac surgery. 4th ed. Philadelphia: Elsevier/Saunders; 2013. p. 1971–2007.

    Google Scholar 

  22. Van Praagh R. What is the Taussig-Bing malformation? Circulation. 1968;38:445–9.

    Article  PubMed  Google Scholar 

  23. Tyrrell MJ, Moes CA. Congenital levoposition of the right atrial appendage. Its relevance to balloon septostomy. Am J Dis Child. 1971;121:508–10.

    Article  PubMed  CAS  Google Scholar 

  24. Charuzi Y, Spanos PK, Amplatz K, Edwards JE. Juxtaposition of the atrial appendages. Circulation. 1973;47:620–7.

    Article  PubMed  CAS  Google Scholar 

  25. Pasquini L, Sanders SP, Parness IA, et al. Coronary echocardiography in 406 patients with d-loop transposition of the great arteries. J Am Coll Cardiol. 1994;24:763–8.

    Article  PubMed  CAS  Google Scholar 

  26. Gittenberger-de Groot AC, Koenraadt WMC, Bartelings MM, et al. Coding of coronary arterial origin and branching in congenital heart disease: the modified Leiden convention. J Thorac Cardiovasc Surg. 2018;156:2260–9.

    Article  PubMed  Google Scholar 

  27. Scheule AM, Jonas RA. Management of transposition of the great arteries with single coronary artery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2001;4:34–57.

    Article  PubMed  CAS  Google Scholar 

  28. Gittenberger-de Groot AC, Sauer U, Quaegebeur J. Aortic intramural coronary artery in three hearts with transposition of the great arteries. J Thorac Cardiovasc Surg. 1986;91:566–71.

    Article  PubMed  CAS  Google Scholar 

  29. Asou T, Karl TR, Pawade A, Mee RB. Arterial switch: translocation of the intramural coronary artery. Ann Thorac Surg. 1994;57:461–5.

    Article  PubMed  CAS  Google Scholar 

  30. Mayer JEJ, Sanders SP, Jonas RA, Castaneda AR, Wernovsky G. Coronary artery pattern and outcome of arterial switch operation for transposition of the great arteries. Circulation. 1990;82:IV139–45.

    PubMed  Google Scholar 

  31. Metton O, Calvaruso D, Gaudin R, et al. Intramural coronary arteries and outcome of neonatal arterial switch operation. Eur J Cardiothorac Surg. 2010;37:1246–53.

    Article  PubMed  Google Scholar 

  32. Jatene MB, Miana LA. Intramural coronary artery course in Jatene operation for transposition of great arteries: still a challenge. Braz J Cardiovasc Surg. 2016;31:111.

    Article  Google Scholar 

  33. Rudolph AM. Congenital diseases of the heart; clinical-physiological considerations. 3rd. New York: Wiley-Blackwell; 2009.

    Book  Google Scholar 

  34. Senning A. Surgical correction of transposition of the great vessels. Surgery. 1959;45:966–80.

    PubMed  CAS  Google Scholar 

  35. Mustard WT. Successful two-stage correction of transposition of the great vessels. Surgery. 1964;55:469–72.

    PubMed  CAS  Google Scholar 

  36. Jonas RA. The arterial switch operation in 2019: how to do it and how to teach it. World J Pediatr Congenit Heart Surg. 2019;10:90–7.

    Article  PubMed  Google Scholar 

  37. Dodge-Khatami A, Kadner A, Berger Md F, Dave H, Turina MI, Prêtre R. In the footsteps of Senning: lessons learned from atrial repair of transposition of the great arteries. Ann Thorac Surg. 2005;79:1433–44.

    Article  PubMed  Google Scholar 

  38. Lecompte Y, Neveux JY, Leca F, et al. Reconstruction of the pulmonary outflow tract without prosthetic conduit. J Thorac Cardiovasc Surg. 1982;84:727–33.

    Article  PubMed  CAS  Google Scholar 

  39. Marathe SP, Talwar S. Surgery for transposition of great arteries: a historical perspective. Ann Pediatr Cardiol. 2015;8:122–8.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Jatene AD, Fontes VF, Paulista PP, et al. Anatomic correction of transposition of the great vessels. J Thorac Cardiovasc Surg. 1976;72:364–70.

    Article  PubMed  CAS  Google Scholar 

  41. Lacour-Gayet F. Complexity stratification of the arterial switch operation: a second learning curve. Cardiol Young. 2012;22:739–44.

    Article  PubMed  Google Scholar 

  42. Stoica S, Carpenter E, Campbell D, et al. Morbidity of the arterial switch operation. Ann Thorac Surg. 2012;93:1977–83.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sohn YS, Brizard CP, Cochrane AD, Wilkinson JL, Mas C, Karl TR. Arterial switch in hearts with left ventricular outflow and pulmonary valve abnormalities. Ann Thorac Surg. 1998;66:842–8.

    Article  PubMed  CAS  Google Scholar 

  44. Kreutzer C, De Vive J, Oppido G, et al. Twenty-five-year experience with Rastelli repair for transposition of the great arteries. J Thorac Cardiovasc Surg. 2000;120:211–23.

    Article  PubMed  CAS  Google Scholar 

  45. Hörer J, Schreiber C, Dworak E, et al. Long-term results after the Rastelli repair for transposition of the great arteries. Ann Thorac Surg. 2007;83:2169–75.

    Article  PubMed  Google Scholar 

  46. Lecompte Y, Vouhé P. Réparation à l’Etage Ventriculaire (REV procedure): not a Rastelli procedure without conduit. Oper Tech Thorac Cardiovasc Surg. 2003;8:150–9.

    Article  Google Scholar 

  47. Di Carlo D, Tomasco B, Cohen L, Vouhé P, Lecompte Y. Long-term results of the REV (réparation à l’ètage ventriculaire) operation. J Thorac Cardiovasc Surg. 2011;142:336–43.

    Article  PubMed  Google Scholar 

  48. Nikaidoh H. Aortic translocation and biventricular outflow tract reconstruction. A new surgical repair for transposition of the great arteries associated with ventricular septal defect and pulmonary stenosis. J Thorac Cardiovasc Surg. 1984;88:365–72.

    Article  PubMed  CAS  Google Scholar 

  49. Honjo O, Kotani Y, Bharucha T, et al. Anatomical factors determining surgical decision-making in patients with transposition of the great arteries with left ventricular outflow tract obstruction. Eur J Cardiothorac Surg. 2013;44:1085–94. discussion 1094

    Article  PubMed  Google Scholar 

  50. Hu S-S, Liu Z-G, Li S-J, et al. Strategy for biventricular outflow tract reconstruction: Rastelli, REV, or Nikaidoh procedure? J Thorac Cardiovasc Surg. 2008;135:331–8.

    Article  PubMed  Google Scholar 

  51. da Silva JP, Baumgratz JF, da Fonseca L. Pulmonary root translocation in transposition of great arteries repair. Ann Thorac Surg. 2000;69:643–5.

    Article  PubMed  Google Scholar 

  52. Kalfa D, Vergnat M, Baruteau AE, Belli E. Damus anastomosis associated with REV/Rastelli procedure allows to extend indications for anatomical repair in complex transposition of great arteries. Interact Cardiovasc Thorac Surg. 2014;18:844–6.

    Article  PubMed  Google Scholar 

  53. Puchalski MD, Lui GK, Miller-Hance WC, et al. Guidelines for performing a comprehensive transesophageal echocardiographic examination in children and all patients with congenital heart disease: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32:173–215.

    Article  PubMed  Google Scholar 

  54. Daebritz SH, Nollert G, Sachweh JS, Engelhardt W, von Bernuth G, Messmer BJ. Anatomical risk factors for mortality and cardiac morbidity after arterial switch operation. Ann Thorac Surg. 2000;69:1880–6.

    Article  PubMed  CAS  Google Scholar 

  55. Cohen MS, Eidem BW, Cetta F, et al. Multimodality imaging guidelines of patients with transposition of the great arteries: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2016;29:571–621.

    Article  PubMed  Google Scholar 

  56. Morgan CT, Mertens L, Grotenhuis H, Yoo SJ, Seed M, Grosse-Wortmann L. Understanding the mechanism for branch pulmonary artery stenosis after the arterial switch operation for transposition of the great arteries. Eur Heart J Cardiovasc Imaging. 2017;18:180–5.

    Article  PubMed  Google Scholar 

  57. Yang SG, Novello R, Nicolson S, et al. Evaluation of ventricular septal defect repair using intraoperative transesophageal echocardiography: frequency and significance of residual defects in infants and children. Echocardiography. 2000;17:681–4.

    Article  PubMed  CAS  Google Scholar 

  58. Preminger TJ, Sanders SP, van der Velde ME, Castañeda AR, Lock JE. “Intramural” residual interventricular defects after repair of conotruncal malformations. Circulation. 1994;89:236–42.

    Article  PubMed  CAS  Google Scholar 

  59. Patel JK, Glatz AC, Ghosh RM, et al. Intramural ventricular septal defect is a distinct clinical entity associated with postoperative morbidity in children after repair of conotruncal anomalies. Circulation. 2015;132:1387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Saedi S, Parsaee M. Intramural ventricular septal defect. Int J Cardiovasc Pract. 2017;2:70–2.

    Article  Google Scholar 

  61. Patel ND, Kim RW, Pornrattanarungsi S, Wong PC. Morphology of intramural ventricular septal defects: clinical imaging and autopsy correlation. Ann Pediatr Cardiol. 2018;11:308–11.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wong D, Golding F, Hess L, et al. Intraoperative coronary artery pulse Doppler patterns in patients with complete transposition of the great arteries undergoing the arterial switch operation. Am Heart J. 2008;156:466–72.

    Article  PubMed  Google Scholar 

  63. Nield LE, Dragulescu A, MacColl C, et al. Coronary artery Doppler patterns are associated with clinical outcomes post-arterial switch operation for transposition of the great arteries. Eur Heart J Cardiovasc Imaging. 2018;19:461–8.

    Article  PubMed  Google Scholar 

  64. Wernovsky G. Transposition of the great arteries and common variants. Pediatr Crit Care Med. 2016;17:S337–43.

    Article  PubMed  Google Scholar 

  65. Rouine-Rapp K, Rouillard KP, Miller-Hance W, et al. Segmental wall-motion abnormalities after an arterial switch operation indicate ischemia. Anesth Analg. 2006;103:1139–46.

    Article  PubMed  Google Scholar 

  66. King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE. Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study. Circulation. 1983;68:68–75.

    Article  PubMed  CAS  Google Scholar 

  67. Kaulitz R, Stümper O, Fraser AG, Kreis A, Tuccillo B, Sutherland GR. The potential value of transoesophageal evaluation of individual pulmonary venous flow after an atrial baffle procedure. Int J Cardiol. 1990;28:299–307.

    Article  PubMed  CAS  Google Scholar 

  68. Mee RB. Severe right ventricular failure after Mustard or Senning operation. Two-stage repair: pulmonary artery banding and switch. J Thorac Cardiovasc Surg. 1986;92:385–90.

    Article  PubMed  CAS  Google Scholar 

  69. Poirier NC, Mee RB. Left ventricular reconditioning and anatomical correction for systemic right ventricular dysfunction. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2000;3:198–215.

    Article  PubMed  Google Scholar 

  70. Delmo Walter EM, Miera O, Nasseri B, et al. Onset of pulmonary stenosis after arterial switch operation for transposition of great arteries with intact ventricular septum. HSR Proc Intensive Care Cardiovasc Anesth. 2011;3:177–87.

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Moe TG, Bardo DME. Long-term outcomes of the arterial switch operation for d-transposition of the great arteries. Prog Cardiovasc Dis. 2018;61:360–4.

    Article  PubMed  Google Scholar 

  72. Stout KK, Daniels CJ, Aboulhosn JA, et al. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. J Am Coll Cardiol. 2019;73:e81–e192.

    Article  PubMed  Google Scholar 

  73. Baumgartner H, Bonhoeffer P, De Groot NM, et al. ESC guidelines for the management of grown-up congenital heart disease (new version 2010). Eur Heart J. 2010;31:2915–57.

    Article  PubMed  Google Scholar 

  74. Schwartz ML, Gauvreau K, del Nido P, Mayer JE, Colan SD. Long-term predictors of aortic root dilation and aortic regurgitation after arterial switch operation. Circulation. 2004;110:II128–32.

    Article  PubMed  CAS  Google Scholar 

  75. Losay J, Touchot A, Capderou A, et al. Aortic valve regurgitation after arterial switch operation for transposition of the great arteries: incidence, risk factors, and outcome. J Am Coll Cardiol. 2006;47:2057–62.

    Article  PubMed  Google Scholar 

  76. McMahon CJ, Ravekes WJ, Smith EO, et al. Risk factors for neo-aortic root enlargement and aortic regurgitation following arterial switch operation. Pediatr Cardiol. 2004;25:329–35.

    Article  PubMed  CAS  Google Scholar 

  77. Co-Vu JG, Ginde S, Bartz PJ, Frommelt PC, Tweddell JS, Earing MG. Long-term outcomes of the neoaorta after arterial switch operation for transposition of the great arteries. Ann Thorac Surg. 2013;95:1654–9.

    Article  PubMed  Google Scholar 

  78. Breinholt JP, John S. Management of the adult with arterial switch. Methodist Debakey Cardiovasc J. 2019;15:133–7.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Nishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129:e521–643.

    PubMed  Google Scholar 

  80. Nishimura RA, Otto CM, Bonow RO, et al. 2017 AHA/ACC focused update of the 2014 AHA/ACC guideline for the Management of Patients with Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2017;70:252–89.

    Article  PubMed  Google Scholar 

  81. Svensson LG, Adams DH, Bonow RO, et al. Aortic valve and ascending aorta guidelines for management and quality measures. Ann Thorac Surg. 2013;95:S1–66.

    Article  PubMed  Google Scholar 

  82. Bonhoeffer P, Bonnet D, Piéchaud JF, et al. Coronary artery obstruction after the arterial switch operation for transposition of the great arteries in newborns. J Am Coll Cardiol. 1997;29:202–6.

    Article  PubMed  CAS  Google Scholar 

  83. Hutter PA, Bennink GB, Ay L, Raes IB, Hitchcock JF, Meijboom EJ. Influence of coronary anatomy and reimplantation on the long-term outcome of the arterial switch. Eur J Cardiothorac Surg. 2000;18:207–13.

    Article  PubMed  CAS  Google Scholar 

  84. Choi BS, Kwon BS, Kim GB, et al. Long-term outcomes after an arterial switch operation for simple complete transposition of the great arteries. Korean Circ J. 2010;40:23–30.

    Article  PubMed  PubMed Central  Google Scholar 

  85. De Pasquale G, Bonassin Tempesta F, Lopes BS, et al. High prevalence of baffle leaks in adults after atrial switch operations for transposition of the great arteries. Eur Heart J Cardiovasc Imaging. 2017;18:531–5.

    PubMed  Google Scholar 

  86. Wilhelm CM, Sisk TL, Roble SL, et al. Accuracy of imaging modalities in detection of baffle leaks in patients following atrial switch operation. Echocardiography. 2016;33:437–42.

    Article  PubMed  Google Scholar 

  87. Marx GR, Hougen TJ, Norwood WI, Fyler DC, Castaneda AR, Nadas AS. Transposition of the great arteries with intact ventricular septum: results of Mustard and Senning operations in 123 consecutive patients. J Am Coll Cardiol. 1983;1:476–83.

    Article  PubMed  CAS  Google Scholar 

  88. Stark J. Reoperations after Mustard and Senning operations. In: Stark J, Pacifico AD, editors. Reoperations in cardiac surgery. London: Springer; 1989. p. 187–207.

    Chapter  Google Scholar 

  89. Hashmi A, Hosking M, Teixeira O, Cornel G, Duncan W. Transoesophageal echocardiographic assessment of obstruction to the pulmonary venous pathway in children with Mustard or Senning repair. Cardiol Young. 1998;8:79–85.

    Article  PubMed  CAS  Google Scholar 

  90. Khairy P, Landzberg MJ, Lambert J, O’Donnell CP. Long-term outcomes after the atrial switch for surgical correction of transposition: a meta-analysis comparing the Mustard and Senning procedures. Cardiol Young. 2004;14:284–92.

    Article  PubMed  Google Scholar 

  91. Ahmed S, Nekkanti R, Nanda NC, Yousif AM. Three-dimensional transesophageal echocardiographic demonstration of intraatrial baffle obstruction. Echocardiography. 2003;20:683–6.

    Article  PubMed  Google Scholar 

  92. Klein AJ, Kim MS, Salcedo E, Fagan T, Kay J. The missing leak: a case report of a baffle-leak closure using real-time 3D transoesophageal guidance. Eur J Echocardiogr. 2009;10:464–7.

    Article  PubMed  Google Scholar 

  93. Cua CL, Kollins K, Roble S, Holzer RJ. Three-dimensional image of a baffle leak in a patient with a Mustard operation. Echocardiography. 2014;31:E315–6.

    Article  PubMed  Google Scholar 

  94. Sarkar D, Bull C, Yates R, et al. Comparison of long-term outcomes of atrial repair of simple transposition with implications for a late arterial switch strategy. Circulation. 1999;100:II176–81.

    Article  Google Scholar 

  95. Mee RBB. Arterial switch for right ventricular failure following Mustard or Senning operations. In: Stark J, Pacifico AD, editors. Reoperations in cardiac surgery. London: Springer; 1989. p. 217–32.

    Chapter  Google Scholar 

  96. Digilio MC, Casey B, Toscano A, et al. Complete transposition of the great arteries: patterns of congenital heart disease in familial precurrence. Circulation. 2001;104:2809–14.

    Article  PubMed  CAS  Google Scholar 

  97. Piacentini G, Digilio MC, Capolino R, et al. Familial recurrence of heart defects in subjects with congenitally corrected transposition of the great arteries. Am J Med Genet A. 2005;137:176–80.

    Article  PubMed  Google Scholar 

  98. Atallah J, Rutledge J, Dyck JD. Congenitally corrected transposition of the great arteries (Atrioventricular and Ventriculoarterial discordance). In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ Heart disease in infants, children and adolescents: including the fetus and young adult. 8th ed. Philadelphia: Wolters Kluwer; 2016. p. 1187–200.

    Google Scholar 

  99. Barron DJ, Stumper O, Brawn WJ, Spicer D, Anderson RH. Congenitally corrected transposition. In: Wernovsky G, Anderson RH, Kumar K, et al., editors. Anderson’s pediatric cardiology. 4th ed. Philadelphia: Elsevier Health Sciences; 2019. p. 697–714.

    Google Scholar 

  100. Wallis GA, Debich-Spicer D, Anderson RH. Congenitally corrected transposition. Orphanet J Rare Dis. 2011;6:22.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wilkinson JL, Anderson RH. Anatomy of discordant atrioventricular connections. World J Pediatr Congenit Heart Surg. 2011;2:43–53.

    Article  PubMed  Google Scholar 

  102. Van Praagh R, Papagiannis J, Grünenfelder J, Bartram U, Martanovic P. Pathologic anatomy of corrected transposition of the great arteries: medical and surgical implications. Am Heart J. 1998;135:772–85.

    Article  PubMed  Google Scholar 

  103. Anderson RH, Becker AE, Arnold R, Wilkinson JL. The conducting tissues in congenitally corrected transposition. Circulation. 1974;50:911–23.

    Article  PubMed  CAS  Google Scholar 

  104. Warnes CA. Transposition of the great arteries. Circulation. 2006;114:2699–709.

    Article  PubMed  Google Scholar 

  105. Presbitero P, Somerville J, Rabajoli F, Stone S, Conte MR. Corrected transposition of the great arteries without associated defects in adult patients: clinical profile and follow up. Br Heart J. 1995;74:57–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Termignon JL, Leca F, Vouhé PR, et al. “Classic” repair of congenitally corrected transposition and ventricular septal defect. Ann Thorac Surg. 1996;62:199–206.

    Article  PubMed  CAS  Google Scholar 

  107. Sano T, Riesenfeld T, Karl TR, Wilkinson JL. Intermediate-term outcome after intracardiac repair of associated cardiac defects in patients with atrioventricular and ventriculoarterial discordance. Circulation. 1995;92:II272–8.

    Article  PubMed  CAS  Google Scholar 

  108. Hraska V, Duncan BW, Mayer JE Jr, Freed M, del Nido PJ, Jonas RA. Long-term outcome of surgically treated patients with corrected transposition of the great arteries. J Thorac Cardiovasc Surg. 2005;129:182–91.

    Article  PubMed  Google Scholar 

  109. Karl TR, Weintraub RG, Brizard CP, Cochrane AD, Mee RB. Senning plus arterial switch operation for discordant (congenitally corrected) transposition. Ann Thorac Surg. 1997;64:495–502.

    Article  PubMed  CAS  Google Scholar 

  110. Reddy VM, McElhinney DB, Silverman NH, Hanley FL. The double switch procedure for anatomical repair of congenitally corrected transposition of the great arteries in infants and children. Eur Heart J. 1997;18:1470–7.

    Article  PubMed  CAS  Google Scholar 

  111. Myers PO, del Nido PJ, Geva T, et al. Impact of age and duration of banding on left ventricular preparation before anatomic repair for congenitally corrected transposition of the great arteries. Ann Thorac Surg. 2013;96:603–10.

    Article  PubMed  Google Scholar 

  112. Duncan BW, Mee RB, Mesia CI, et al. Results of the double switch operation for congenitally corrected transposition of the great arteries. Eur J Cardiothorac Surg. 2003;24:11–9. discussion 19

    Article  PubMed  Google Scholar 

  113. Flinn CJ, Wolff GS, Dick M, et al. Cardiac rhythm after the Mustard operation for complete transposition of the great arteries. N Engl J Med. 1984;310:1635–8.

    Article  PubMed  CAS  Google Scholar 

  114. Williams WG, Trusler GA, Kirklin JW, et al. Early and late results of a protocol for simple transposition leading to an atrial switch (Mustard) repair. J Thorac Cardiovasc Surg. 1988;95:717–26.

    Article  PubMed  CAS  Google Scholar 

  115. Malhotra SP, Reddy VM, Qiu M, et al. The hemi-Mustard/bidirectional Glenn atrial switch procedure in the double-switch operation for congenitally corrected transposition of the great arteries: rationale and midterm results. J Thorac Cardiovasc Surg. 2011;141:162–70.

    Article  PubMed  Google Scholar 

  116. Murtuza B, Barron DJ, Stumper O, et al. Anatomic repair for congenitally corrected transposition of the great arteries: a single-institution 19-year experience. J Thorac Cardiovasc Surg. 2011;142:1348–57.

    Article  PubMed  Google Scholar 

  117. Cui B, Li S, Yan J, et al. The results of a two-stage double switch operation for congenital corrected transposition of the great arteries with a deconditioned morphologically left ventricle. Interact Cardiovasc Thorac Surg. 2014;19:921–5.

    Article  PubMed  Google Scholar 

  118. Brawn WJ, Barron DJ, Jones TJ, Quinn DW. The fate of the retrained left ventricle after double switch procedure for congenitally corrected transposition of the great arteries. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2008:69–73.

    Google Scholar 

  119. Filippov AA, Del Nido PJ, Vasilyev NV. Management of Systemic Right Ventricular Failure in patients with congenitally corrected transposition of the great arteries. Circulation. 2016;134:1293–302.

    Article  PubMed  Google Scholar 

  120. Ravishankar C. L-transposition of the great arteries. Pediatr Crit Care Med. 2016;17:S344–6.

    Article  PubMed  Google Scholar 

  121. Sreeram N, Stümper OF, Kaulitz R, Hess J, Roelandt JR, Sutherland GR. Comparative value of transthoracic and transesophageal echocardiography in the assessment of congenital abnormalities of the atrioventricular junction. J Am Coll Cardiol 1990;16:1205-1214.

    Article  PubMed  CAS  Google Scholar 

  122. Allwork SP, Bentall HH, Becker AE, et al. Congenitally corrected transposition of the great arteries: morphologic study of 32 cases. Am J Cardiol. 1976;38:910–23.

    Article  PubMed  CAS  Google Scholar 

  123. Caso P, Ascione L, Lange A, Palka P, Mininni N, Sutherland GR. Diagnostic value of transesophageal echocardiography in the assessment of congenitally corrected transposition of the great arteries in adult patients. Am Heart J. 1998;135:43–50.

    Article  PubMed  CAS  Google Scholar 

  124. Vargas-Barron J, Rijlaarsdam M, Romero-Cardenas A, Keirns C, Diaz-Moncada S. Transesophageal echocardiography in adults with congenital cardiopathies. Am Heart J. 1993;126:426–32.

    Article  PubMed  CAS  Google Scholar 

  125. Anderson RH, Becker AE, Gerlis LM. The pulmonary outflow tract in classically corrected transposition. J Thorac Cardiovasc Surg. 1975;69:747–57.

    Article  PubMed  CAS  Google Scholar 

  126. Levy MJ, Lillehei CW, Elliott LP, Carey LS, Adams P, Edwards JE. Accessory valvular tissue causing subpulmonary stenosis in corrected transposition of great vessels. Circulation. 1963;27:494–502.

    Article  PubMed  CAS  Google Scholar 

  127. Franco-Vazquez JS, Perez-Trevino C, Gaxiola A. Corrected transposition of the great arteries with extreme counter-clockwise torsion of the heart. Acta Cardiol. 1973;28:636–43.

    PubMed  CAS  Google Scholar 

  128. Anderson RH, Shinebourne EA, Gerlis LM. Criss-cross atrioventricular relationships producing paradoxical atrioventricular concordance or discordance. Their significance to nomenclature of congenital heart disease. Circulation. 1974;50:176–80.

    Article  PubMed  CAS  Google Scholar 

  129. Kinsley RH, McGoon DC, Danielson GK. Corrected transposition of the great arteries: associated ventricular rotation. Circulation. 1974;49:574–8.

    Article  PubMed  CAS  Google Scholar 

  130. Carr I, Tynan M, Aberdeen E, Bonhamca RE, Graham G, Waterston DJ. Predictive accuracy of the “loop rule” in 109 children with classical complete transposition of the great arteries. Circulation. 1968;38:52.

    Google Scholar 

  131. Anderson KR, Danielson GK, McGoon DC, Lie JT. Ebstein’s anomaly of the left-sided tricuspid valve: pathological anatomy of the valvular malformation. Circulation. 1978;58:I87–91.

    PubMed  CAS  Google Scholar 

  132. Castaneda AR, Jonas RA, Mayer JE, Hanley FL. Corrected transposition of the great arteries. In: Cardiac surgery of the neonate and infant. Philadelphia: Saunders; 1994. p. 445–59.

    Google Scholar 

  133. Ismat FA, Baldwin HS, Karl TR, Weinberg PM. Coronary anatomy in congenitally corrected transposition of the great arteries. Int J Cardiol. 2002;86:207–16.

    Article  PubMed  Google Scholar 

  134. Metton O, Gaudin R, Ou P, et al. Early prophylactic pulmonary artery banding in isolated congenitally corrected transposition of the great arteries. Eur J Cardiothorac Surg. 2010;38:728–34.

    Article  PubMed  Google Scholar 

  135. Brawn WJ. The double switch for atrioventricular discordance. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2005;11:51–6.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aarti H. Bhat .

Editor information

Editors and Affiliations

Electronic Supplementary Material

ME 4-Ch view in transposition displaying a normal appearance of the intracardiac structures. In this image the interventricular septum appears intact, both ventricles are apex forming and appear morphologically normal. The atrioventricular connections are concordant (MP4 2220 kb)

Modified ME RV In-Out view in transposition displaying the right ventricle as it leads to an anterior aorta, identified by absence of branching. The pulmonary artery is posterior in relation to the aorta (MP4 1387 kb)

ME LAX color compare views in transposition. Two-dimesional imaging depicting the discordant ventriculoarterial connections with the left ventricle giving rise to a posterior pulmonary artery and the right ventricle connecting to an anterior aorta. Color flow Doppler shows laminar flow across the outflow tracts. A trace amount of pulmonary regurgitation is noted (MP4 3803 kb)

DTG sweep in transposition depicts the anatomy as the probe tip moves from a posterior to an anterior location. The images display the presence of a large ventricular septal defect posteriorly. The outflow tracts and abnormal ventriculoarterial connections are seen as the imaging plane moves more anteriorly (MP4 5669 kb)

DTG 5-Ch view in transposition depicts the branching main pulmonary artery as it arises from the left ventricle. The left ventricular outflow tract appears crowded in this image, meriting further evaluation. DTG imaging allows for optimal spectral Doppler alignment in the assessment of flow across outflow tracts (MP4 2916 kb)

Image obtained by probe withdrawal and anteflexion from a ME 5-Ch view displaying the parallel orientation of the great arteries in transposition (MP4 3640 kb)

ME Ao SAX view in D-TGA displaying both semilunar valves en face, with the aortic valve (AoV) anterior and rightward to the pulmonary valve (PV). LA left atrium, RA right atrium (MP4 3786 kb)

UE PA view in transposition depicting the rightward and anterior aorta and the posterior and leftward main pulmonary artery bearing its branches. The left pulmonary artery is usually better profiled in this lesion than in the structurally normal heart (although not clearly seen in this example). Flow across a patent ductus arteriosus can be examined in this view assisted by color Doppler imaging (MP4 2585 kb)

ME LAX view in transposition showing left ventricular outflow tract obstruction related to prominent redundant subpulmonary tissue and likely pulmonary valve stenosis. The images suggest the presence of a septal aneurysm contributing to the obstruction (MP4 3973 kb)

The video sequences display the anatomy in a neonate with transposition, large ventricular septal defect, and pulmonary outflow obstruction, as depicted in ME 4-Ch, ME 5-Ch, ME Bicaval, and ME LAX views. Note the posteriorly malaligned infundibular septum resulting in subpulmonary narrowing and color flow turbulence across the pulmonary outflow tract. Ao aorta, LA left atrium, LV left ventricle, PA pulmonary artery, PV pulmonary valve, RA right atrium, RV right ventricle, SVC superior vena cava (MP4 2602 kb)

Case #1. ME RV In-Out view post arterial switch operation depicting both arterial anastomoses. Note the respective suture lines (MP4 4077 kb)

Case #1. At the conclusion of imaging, in this final modified ME Mitral view, the previously noted papillary muscle brightness seems resolved, with improved mitral valve function. The ventricular function overall appears mildly decreased (MP4 1412 kb)

Case #2. ME 4-Ch views in an adult with a history of transposition post atrial switch procedure, depicting a mitral valve vegetation projecting into the systemic venous atrial aspect of the Mustard baffle associated with mitral regurgitation. A flow disturbance is noted along the left ventricular outflow tract (MP4 699 kb)

Case #2. The mitral valve vegetation depicted in Video 15.67, is also seen in this ME Mitral view (MP4 548 kb)

Case #2. 3D TEE imaging using X-plane and 3D zoom modes allows for further characterization of the vegetation and an en-face view of the mitral valve to be obtained (MP4 298 kb)

Case #2. 3D TEE cropped image displays the mitral valve and associated vegetation. In this view the anterior mitral leaflet and pulmonary outflow tract are to the right of the image (MP4 504 kb)

Case #2. X-Plane imaging of the pulmonary valve shows a lack of valve coaptation and a suspicious echodensity in the central aspect of the valve (MP4 651 kb)

Case #2. Superimposed color Doppler images of the pulmonary valve from orthogonal views obtained in the same patient displayed in Video 15.71 show central valve regurgitation (MP4 566 kb)

Case #2. ME LAX zoomed image displaying the mobile vegetations on both, the mitral and pulmonary valves. Note the anterior spatial orientation of the aorta in this patient with transposition post Mustard operation (MP4 1085 kb)

Case #2. ME 2D zoomed image displaying the atrial pacing lead in the systemic venous atrium (MP4 622 kb)

Case #2. Corresponding 3D TEE image to that shown in Video 15.74 (MP4 232 kb)

Case #2. ME zoomed images of the systemic venous baffle as it drains towards the mitral valve showing the atrial pacing lead, which also serves as a convenient landmark to demonstrate the superior systemic venous limb of the Mustard interatrial baffle. Mitral regurgitation is also noted (MP4 629 kb)

Case #2. The pathway from the pulmonary venous atrium to the morphologic right ventricle appears widely patent by 2D and color imaging in this ME sagittal view, rotated toward the patient’s left. In this view, the inferior vena cava limb of the systemic venous is demonstrated in short axis on the left side of the images (MP4 488 kb)

Case #3. ME 4-Ch view demonstrating L-looped ventricles in dextrocardia and congenitally corrected TGA. Note that the patient’s left-sided ventricle (to the right of the image) is the morphologic right ventricle, with septal attachments of the atrioventricular valve—an anatomic hallmark for a morphologic right ventricle. The infant’s right-sided ventricle (to the left of the image) is the morphologic left ventricle, with a smoother wall. The lower right-hand corner of the video denotes the sternum, oriented diagonally (MP4 4260 kb)

Case #3. With TEE probe withdrawal and anteflexion from the ME 4-Ch view shown in Video 15.78, the leftward, large aortic root is seen arising from the right ventricle. The smaller, essentially atretic pulmonary artery is connected to the left ventricle. The potential pathway between the left ventricle and aorta is seen across a large ventricular septal defect (MP4 4039 kb)

Case #3. TG Basal SAX 2D image displays an en face view of the tricuspid (to the right of the image) and mitral valves (to the left of the image). As the probe moves in and out further into the stomach almost to a DTG view, both the aortic and pulmonary roots are seen, as well as the ventricular septal defect. The cardiac apex points to patient’s right (left of the image) consistent with the diagnosis of dextrocardia in this infant (MP4 4211 kb)

Case #3. Corresponding color flow image to Video 15.80 showing continuous swirling flow from the ductal stent (not imaged in this view) into the main pulmonary artery (MP4 628 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhat, A.H., Soriano, B.D. (2021). Transposition Complexes. In: Wong, P.C., Miller-Hance, W.C. (eds) Transesophageal Echocardiography for Pediatric and Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-57193-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57193-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57192-4

  • Online ISBN: 978-3-030-57193-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation