Atherogenesis and Vascular Biology

  • Chapter
  • First Online:
Therapeutic Lipidology

Part of the book series: Contemporary Cardiology ((CONCARD))

Abstract

Atherosclerotic disease is widely prevalent throughout the world and is a manifestation of a maladaptive response of the arterial vasculature to progressive injury. Arteries are histologically, biochemically, and physiologically complex conduits of blood that can undergo continuous structural alteration in response to cardiovascular risk factors (hyperlipidemia, hypertension, diabetes) as well as an extraordinary range of chemical influences that promote inflammation, oxidation, and thrombosis. Atherosclerosis is characterized by endothelial dysfunction, extensive histologic and connective tissue alterations of the intima, media, and adventitia, and an influx of inflammatory white cells from the blood into the subendothelial space. As the inflammatory and oxidative milieu in the arterial wall intensify, foam cells and fatty streaks develop, ultimately resulting in the formation of atheromatous plaques if the inciting factors are not brought under control. Plaque enlarges and can become vulnerable to rupture from superficial erosions or thinned fibrous cap regions, intra-plaque hemorrhage, or cholesterol crystal formation. With the exposure of tissue factor and collagen, platelets are activated and can form an overlying thrombus on the plaque leading to the development of acute tissue ischemia and necrosis. Atherogenesis is a tightly coordinated process that integrates many biochemical signaling pathways both within and between cells. The progression of atherosclerotic plaque can be arrested with appropriate intervention, and if not yet calcified, plaque can be regressed. There are many gaps in our knowledge of atherogenesis, but great strides have been made in our understanding of this disease during the past three decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Laslett LJ, Alagona P, Clark BA, et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol. 2012;60:S1–S49.

    Article  PubMed  Google Scholar 

  2. Joseph A, Ackerman D, Talley JD, Johnstone J, Kupersmith J. Manifestations of coronary atherosclerosis in young trauma victims – an autopsy study. J Am Coll Cardiol. 1993;22:459–67.

    Article  CAS  PubMed  Google Scholar 

  3. Yusuf S, Reddy S, Ôunpuu S, Anand S. Global burden of cardiovascular diseases. Part I: general considerations, the epidemiologic transition, risk factors, and impact of urbanization. Circulation. 2001;104:2746–53.

    Article  CAS  PubMed  Google Scholar 

  4. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  5. Nissen SE. Aggressive lipid-lowering therapy and regression of coronary atheroma. JAMA. 2004;292:1–3.

    Google Scholar 

  6. Packard CJ, Weintraub WS, Laufs U. New metrics needed to visualize the long-term impact of early LDL-C lowering on the cardiovascular disease trajectory. Vasc Pharmacol. 2015;71:37–9.

    Article  CAS  Google Scholar 

  7. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  CAS  PubMed  Google Scholar 

  8. Baigent C, Keech A, Kearney PM, et al. Efficacy and safety of cholesterol-lowering treatment: prospective meta-analysis of data from 90,056 participants in 14 randomised trials of statins. Lancet. 2005;366:1267–78.

    Article  CAS  PubMed  Google Scholar 

  9. Berry JD, Dyer A, Cai X, et al. Lifetime risks of cardiovascular disease. N Engl J Med. 2012;366:321–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ference BA, Graham I, Tokgozoglu L, Catapano AL. Impact of lipids on cardiovascular health. J Am Coll Cardiol. 2018;72:1141–56.

    Article  CAS  PubMed  Google Scholar 

  11. Laufs U, Dent R, Kostenuik PJ, Toth PP, Catapano AL, Chapman MJ. Why is hypercholesterolaemia so prevalent? A view from evolutionary medicine. Eur Heart J. 2018;40:2825–30.

    Article  CAS  Google Scholar 

  12. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. Circulation. 2014;129:S1–45.

    Article  PubMed  Google Scholar 

  13. Weintraub WS, Daniels SR, Burke LE, et al. Value of primordial and primary prevention for cardiovascular disease. A policy statement from the American Heart Association. Circulation. 2011;124(8):967–90.

    Article  CAS  PubMed  Google Scholar 

  14. Chiolero A, Bovet P. Hypertension in children: from screening to primordial prevention. Lancet Public Health. 2017;2:e346–7.

    Article  PubMed  Google Scholar 

  15. Kuiper JG, Sanchez RJ, Houben E, et al. Use of lipid-modifying therapy and LDL-C goal attainment in a high-cardiovascular-risk population in the Netherlands. Clin Ther. 2017;39:819–827.e1.

    Article  CAS  PubMed  Google Scholar 

  16. Perez de Isla L, Alonso R, Watts GF, et al. Attainment of LDL-cholesterol treatment goals in patients with familial hypercholesterolemia: 5-year SAFEHEART registry follow-up. J Am Coll Cardiol. 2016;67:1278–85.

    Article  PubMed  Google Scholar 

  17. Gitt AK, Lautsch D, Ferrieres J, et al. Low-density lipoprotein cholesterol in a global cohort of 57,885 statin-treated patients. Atherosclerosis. 2016;255:200–9.

    Article  CAS  PubMed  Google Scholar 

  18. Toth PP. Why do patients at highest CV risk receive the least treatment? The danger of doing too little. Resident Staff Phys. 2007;53:s1–7.

    Google Scholar 

  19. Gandhi NS, Mancera RL. The structure of Glycosaminoglycans and their interactions with proteins. Chem Biol Drug Des. 2008;72:455–82.

    Article  CAS  PubMed  Google Scholar 

  20. Bujo H, Saito Y. Modulation of smooth muscle cell migration by members of the low-density lipoprotein receptor family. Arterioscler Thromb Vasc Biol. 2006;26:1246–52.

    Article  CAS  PubMed  Google Scholar 

  21. Liebner S, Cavallaro U, Dejana E. The multiple languages of endothelial cell-to-cell communication. Arterioscler Thromb Vasc Biol. 2006;26:1431–8.

    Article  CAS  PubMed  Google Scholar 

  22. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev. 2004;84:869–901.

    Article  CAS  PubMed  Google Scholar 

  23. John S, Schmieder RE. Impaired endothelial function in arterial hypertension and hypercholesterolemia: potential mechanisms and differences. J Hypertens. 2000;18:363–74.

    Article  CAS  PubMed  Google Scholar 

  24. Félétou M, Vanhoutte PM. Endothelium-derived hyperpolarizing factor: where are we now? Arterioscler Thromb Vasc Biol. 2006;26:1215–25.

    Article  PubMed  CAS  Google Scholar 

  25. Oliver JJ, Webb DJ, Newby DE. Stimulated tissue plasminogen activator release as a marker of endothelial function in humans. Arterioscler Thromb Vasc Biol. 2005;25:2470–9.

    Article  CAS  PubMed  Google Scholar 

  26. Loscalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res. 2001;88:756–62.

    Article  CAS  PubMed  Google Scholar 

  27. Gibbons GH, Dzau VJ. The emerging concept of vascular remodeling. N Engl J Med. 1994;330:1431–8.

    Article  CAS  PubMed  Google Scholar 

  28. Abe J, Berk BC. Novel mechanisms of endothelial mechanotransduction. Arterioscler Thromb Vasc Biol. 2014;34:2378–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou J, Li YS, Chien S. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler Thromb Vasc Biol. 2014;34:2191–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol. 2003;23:168–75.

    Article  CAS  PubMed  Google Scholar 

  31. Goligorsky MS, Noiri E, Tsukahara H, Budzikowski AS, Li H. A pivotal role of nitric oxide in endothelial cell dysfunction. Acta Physiol Scand. 2000;168:33–40.

    Article  CAS  PubMed  Google Scholar 

  32. Esper RJ, Nordaby RA, Vilariño JO, Paragano A, Cacharrón JL, Machado RA. Endothelial dysfunction: a comprehensive appraisal. Cardiovasc Diabetol. 2006;5:1–18.

    Article  CAS  Google Scholar 

  33. Deanfield JE, Halcox JP, Rabelink TJ. Endothelial function and dysfunction: testing and clinical relevance. Circulation. 2007;115:1285–95.

    Article  PubMed  Google Scholar 

  34. Amiri F, Virdis A, Neves MF, et al. Endothelium-restricted overexpression of human endothelin-1 causes vascular Remodeling and endothelial dysfunction. Circulation. 2004;110:2233–40.

    Article  CAS  PubMed  Google Scholar 

  35. Cai H, Harrison DG. Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res. 2000;87:840–4.

    Article  CAS  PubMed  Google Scholar 

  36. Davignon J, Ganz P. Role of endothelial dysfunction in atherosclerosis. Circulation. 2004;109:III-27–32.

    Article  Google Scholar 

  37. Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol. 2010;7:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res. 2007;101:234–47.

    Article  CAS  PubMed  Google Scholar 

  39. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol. 2011;31:969–79.

    Article  CAS  PubMed  Google Scholar 

  40. Libby P. Atherosclerosis: the new view. Sci Am. 2002;286:46–55.

    Article  PubMed  Google Scholar 

  41. Libby P. Inflammation in atherosclerosis. Nature. 2002;420:868–74.

    Article  CAS  PubMed  Google Scholar 

  42. Libby P, Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med. 2002;8:1257–62.

    Article  CAS  PubMed  Google Scholar 

  43. Yang L, Froio RM, Sciuto TE, Dvorak AM, Alon R, Luscinskas FW. ICAM-1 regulates neutrophil adhesion and transcellular migration of TNF-alpha-activated vascular endothelium under flow. Blood. 2005;106:584–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Carman CV, Springer TA. A transmigratory cup in leukocyte diapedesis both through individual vascular endothelial cells and between them. J Cell Biol. 2004;167:377–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ley K, Miller YI, Hedrick CC. Monocyte and macrophage dynamics during atherogenesis. Arterioscler Thromb Vasc Biol. 2011;31:1506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 2016;118:653–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Graaf JC, Banga JD, Moncada S, Palmer RM, de Groot PG, Sixma JJ. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation. 1992;85:2284–90.

    Article  PubMed  Google Scholar 

  48. Libby P, Simon DI. Inflammation and thrombosis: the clot thickens. Circulation. 2001;103:1718–20.

    Article  CAS  PubMed  Google Scholar 

  49. Liao JK. Endothelium and acute coronary syndromes. Clin Chem. 1998;44:1799–808.

    Article  CAS  PubMed  Google Scholar 

  50. Kaplan M, Aviram M. Retention of oxidized LDL by extracellular matrix proteoglycans leads to its uptake by macrophages. Arterioscler Thromb Vasc Biol. 2001;21:386–93.

    Article  CAS  PubMed  Google Scholar 

  51. Borén J, Williams KJ. The central role of arterial retention of cholesterol-rich apolipoprotein-B-containing lipoproteins in the pathogenesis of atherosclerosis: a triumph of simplicity. Curr Opin Lipidol. 2016;27:473–83.

    Article  PubMed  CAS  Google Scholar 

  52. Kuhlencordt PJ, Gyurko R, Han F, et al. Accelerated atherosclerosis, aortic aneurysm formation, and ischemic heart disease in apolipoprotein E/endothelial nitric oxide synthase double-knockout mice. Circulation. 2001;104:448–54.

    Article  CAS  PubMed  Google Scholar 

  53. Spiekermann S, Landmesser U, Dikalov S, et al. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation. 2003;107:1383–9.

    Article  CAS  PubMed  Google Scholar 

  54. Liu J, Yang F, Yang XP, Jankowski M, Pagano PJ. NAD(P)H oxidase mediates angiotensin II-induced vascular macrophage infiltration and medial hypertrophy. Arterioscler Thromb Vasc Biol. 2003;23:776–82.

    Article  CAS  PubMed  Google Scholar 

  55. Heistad DD. Oxidative stress and vascular disease: 2005 Duff lecture. Arterioscler Thromb Vasc Biol. 2006;26:689–95.

    Article  CAS  PubMed  Google Scholar 

  56. Leopold JA, Loscalzo J. Oxidative enzymopathies and vascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1332–40.

    Article  CAS  PubMed  Google Scholar 

  57. Anderson TJ, Uehata A, Gerhard MD, et al. Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol. 1995;26:1235–41.

    Article  CAS  PubMed  Google Scholar 

  58. Anderson TJ, Gerhard MD, Meredith IT, et al. Systemic nature of endothelial dysfunction in atherosclerosis. Am J Cardiol. 1995;75:71B–4B.

    Article  CAS  PubMed  Google Scholar 

  59. Sobel BE, Woodcock-Mitchell J, Schneider DJ, Holt RE, Marutsuka K, Gold H. Increased plasminogen activator inhibitor type 1 in coronary artery atherectomy specimens from type 2 diabetic compared with nondiabetic patients: a potential factor predisposing to thrombosis and its persistence. Circulation. 1998;97:2213–21.

    Article  CAS  PubMed  Google Scholar 

  60. Hambrecht R, Wolf A, Gielen S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med. 2000;342:454–60.

    Article  CAS  PubMed  Google Scholar 

  61. Wassmann S, Nickenig G. Interrelationship of free oxygen radicals and endothelial dysfunction – modulation by statins. Endothelium. 2003;10:23–33.

    Article  CAS  PubMed  Google Scholar 

  62. Britten MB, Zeiher AM, Schachinger V. Clinical importance of coronary endothelial vasodilator dysfunction and therapeutic options. J Intern Med. 1999;245:315–27.

    Article  CAS  PubMed  Google Scholar 

  63. Goldin A, Beckman JA, Schmidt AM, Creager MA. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation. 2006;114:597–605.

    Article  CAS  PubMed  Google Scholar 

  64. Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab. 2014;3:94–108.

    Article  CAS  PubMed  Google Scholar 

  65. Bierhaus A, Chevion S, Chevion M, et al. Advanced glycation end product-induced activation of NF-κB is suppressed by α-lipoic acid in cultured endothelial cells. Diabetes. 1997;46:1481–90.

    Article  CAS  PubMed  Google Scholar 

  66. Aronson D, Rayfield EJ. How hyperglycemia promotes atherosclerosis: molecular mechanisms. Cardiovasc Diabetol. 2002;1:1.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Granér M, Siren R, Nyman K, et al. Cardiac steatosis associates with visceral obesity in nondiabetic obese men. J Clin Endocrinol Metabol. 2013;98:1189–97.

    Article  CAS  Google Scholar 

  68. Toth PP. Epicardial steatosis, insulin resistance, and coronary artery disease. Heart Fail Clin. 2012;8:671–8.

    Article  PubMed  Google Scholar 

  69. Libby P, Nahrendorf M, Swirski FK. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “cardiovascular continuum”. J Am Coll Cardiol. 2016;67:1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Loria V, Dato I, Graziani F, Biasucci LM. Myeloperoxidase: a new biomarker of inflammation in ischemic heart disease and acute coronary syndromes. Mediat Inflamm. 2008;2008:135625.

    Article  CAS  Google Scholar 

  71. Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999;274:23679–82.

    Article  CAS  PubMed  Google Scholar 

  72. Jenkins AJ, Klein RL, Januszewski AS. Lipoprotein glycation in diabetes mellitus. In: Jenkins JA, Toth PP, Lyons JT, editors. Lipoproteins in diabetes mellitus. New York: Springer New York; 2014. p. 157–86.

    Chapter  Google Scholar 

  73. Williams KJ, Tabas I. The response-to-retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol. 1995;15:551–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arterioscler Thromb Vasc Biol. 2006;26:1702–11.

    Article  CAS  PubMed  Google Scholar 

  75. Horvai A, Palinski W, Wu H, Moulton KS, Kalla K, Glass CK. Scavenger receptor a gene regulatory elements target gene expression to macrophages and to foam cells of atherosclerotic lesions. Proc Nat Acad Sci. 1995;92:5391–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001;108:785–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mehta JL, Chen J, Hermonat PL, Romeo F, Novelli G. Lectin-like, oxidized low-density lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res. 2006;69:36–45.

    Article  CAS  PubMed  Google Scholar 

  78. Minami M, Kume N, Shimaoka T, et al. Expression of scavenger receptor for phosphatidylserine and oxidized lipoprotein (SR-PSOX) in human atheroma. Ann NY Acad Sci. 2001;947:373–6.

    Article  CAS  PubMed  Google Scholar 

  79. Szmitko PE, Wang CH, Weisel RD, Jeffries GA, Anderson TJ, Verma S. Biomarkers of vascular disease linking inflammation to endothelial activation: part II. Circulation. 2003;108:2041–8.

    Article  PubMed  Google Scholar 

  80. Webb NR, Moore KJ. Macrophage-derived foam cells in atherosclerosis: lessons from murine models and implications for therapy. Curr Drug Targets. 2007;8:1249–63.

    Article  CAS  PubMed  Google Scholar 

  81. Zimmer S, Grebe A, Latz E. Danger signaling in atherosclerosis. Circ Res. 2015;116:323–40.

    Article  CAS  PubMed  Google Scholar 

  82. Yu X-H, Fu Y-C, Zhang D-W, Yin K, Tang C-K. Foam cells in atherosclerosis. Clin Chim Acta. 2013;424:245–52.

    Article  CAS  PubMed  Google Scholar 

  83. Libby P, Ridker PM, Hansson GK. Progress and challenges in translating the biology of atherosclerosis. Nature. 2011;473:317–25.

    Article  CAS  PubMed  Google Scholar 

  84. Mallat Z. Macrophages. Arterioscler Thromb Vasc Biol. 2017;37:e92–8.

    Article  CAS  PubMed  Google Scholar 

  85. Vengrenyuk Y, Nishi H, Long X, et al. Cholesterol loading reprograms the microRNA-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype. Arterioscler Thromb Vasc Biol. 2015;35:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ, Berliner JA. Role of phospholipid oxidation products in atherosclerosis. Circ Res. 2012;111:778–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Starosta V, Wu T, Zimman A, et al. Differential regulation of endothelial cell permeability by high and low doses of oxidized 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphocholine. Am J Respir Cell Mol Biol. 2012;46:331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bach RR. Tissue factor encryption. Arterioscler Thromb Vasc Biol. 2006;26:456–61.

    Article  CAS  PubMed  Google Scholar 

  89. Okamura Y, Watari M, Jerud ES, et al. The extra domain a of fibronectin activates toll-like receptor 4. J Biol Chem. 2001;276:10229–33.

    Article  CAS  PubMed  Google Scholar 

  90. Johnson GB, Brunn GJ, Kodaira Y, Platt JL. Receptor-mediated monitoring of tissue well-being via detection of soluble heparan sulfate by Toll-like receptor 4. J Immunol. 2002;168:5233–9.

    Article  CAS  PubMed  Google Scholar 

  91. Toth PP. Reverse cholesterol transport: high-density lipoprotein’s magnificent mile. Curr Atheroscler Rep. 2003;5:386–93.

    Article  PubMed  Google Scholar 

  92. Getz GS, Reardon CA. Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res. 2009;50:S156–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Atkinson RD, Coenen KR, Plummer MR, Gruen ML, Hasty AH. Macrophage-derived apolipoprotein E ameliorates dyslipidemia and atherosclerosis in obese apolipoprotein E-deficient mice. Am J Physiol Endocrinol Metab. 2008;294:E284–90.

    Article  CAS  PubMed  Google Scholar 

  94. Shashkin P, Dragulev B, Ley K. Macrophage differentiation to foam cells. Curr Pharm Des. 2005;11:3061–72.

    Article  CAS  PubMed  Google Scholar 

  95. Hansson GK, Libby P, Schonbeck U, Yan ZQ. Innate and adaptive immunity in the pathogenesis of atherosclerosis. Circ Res. 2002;91:281–91.

    Article  CAS  PubMed  Google Scholar 

  96. Houtkamp MA, de Boer OJ, van der Loos CM, van der Wal AC, Becker AE. Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J Pathol. 2001;193:263–9.

    Article  CAS  PubMed  Google Scholar 

  97. Watanabe M, Sangawa A, Sasaki Y, et al. Distribution of inflammatory cells in adventitia changed with advancing atherosclerosis of human coronary artery. J Atheroscler Thromb. 2007;14:325–31.

    Article  PubMed  Google Scholar 

  98. Campbell KA, Lipinski MJ, Doran AC, Skaflen MD, Fuster V, McNamara CA. Lymphocytes and the adventitial immune response in atherosclerosis. Circ Res. 2012;110:889–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Libby P, Shi G-P. Mast cells as mediators and modulators of atherogenesis. Circulation. 2007;115:2471–3.

    Article  PubMed  Google Scholar 

  100. Caughey GH. Mast cell tryptases and chymases in inflammation and host defense. Immunol Rev. 2007;217:141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Leclercq A, Houard X, Philippe M, et al. Involvement of intraplaque hemorrhage in atherothrombosis evolution via neutrophil protease enrichment. J Leukoc Biol. 2007;82:1420–9.

    Article  CAS  PubMed  Google Scholar 

  102. Singh U, Devaraj S, Jialal I. C-reactive protein stimulates myeloperoxidase release from polymorphonuclear cells and monocytes: implications for acute coronary syndromes. Clin Chem. 2009;55:361–4.

    Article  CAS  PubMed  Google Scholar 

  103. Soehnlein O. Multiple roles for neutrophils in atherosclerosis. Circ Res. 2012;110:875–88.

    Article  CAS  PubMed  Google Scholar 

  104. Doring Y, Soehnlein O, Weber C. Neutrophil extracellular traps in atherosclerosis and atherothrombosis. Circ Res. 2017;120:736–43.

    Article  PubMed  CAS  Google Scholar 

  105. Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol. 2007;176:231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Martinelli S, Urosevic M, Daryadel A, et al. Induction of genes mediating interferon-dependent extracellular trap formation during neutrophil differentiation. J Biol Chem. 2004;279:44123–32.

    Article  CAS  PubMed  Google Scholar 

  107. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V. Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science. 2015;349:316–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Massberg S, Grahl L, von Bruehl ML, et al. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med. 2010;16:887–96.

    Article  CAS  PubMed  Google Scholar 

  109. Koupenova M, Clancy L, Corkrey HA, Freedman JE. Circulating platelets as mediators of immunity, inflammation, and thrombosis. Circ Res. 2018;122:337–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Blann AD, Nadar SK, Lip GYH. The adhesion molecule P-selectin and cardiovascular disease. Eur Heart J. 2003;24:2166–79.

    Article  CAS  PubMed  Google Scholar 

  111. Gkaliagkousi E, Ritter J, Ferro A. Platelet-derived nitric oxide signaling and regulation. Circ Res. 2007;101:654–62.

    Article  CAS  PubMed  Google Scholar 

  112. Denis MM, Tolley ND, Bunting M, et al. Esca** the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122:379–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Lindemann S, Tolley ND, Dixon DA, et al. Activated platelets mediate inflammatory signaling by regulated interleukin 1beta synthesis. J Cell Biol. 2001;154:485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Alard JE, Ortega-Gomez A, Wichapong K, et al. Recruitment of classical monocytes can be inhibited by disturbing heteromers of neutrophil HNP1 and platelet CCL5. Sci Transl Med. 2015;7:317ra196.

    Article  PubMed  CAS  Google Scholar 

  115. Risitano A, Beaulieu LM, Vitseva O, Freedman JE. Platelets and platelet-like particles mediate intercellular RNA transfer. Blood. 2012;119:6288–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gidlof O, van der Brug M, Ohman J, et al. Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood. 2013;121:3908–17, S1–26

    Article  PubMed  CAS  Google Scholar 

  117. Laffont B, Corduan A, Ple H, et al. Activated platelets can deliver mRNA regulatory Ago2*microRNA complexes to endothelial cells via microparticles. Blood. 2013;122:253–61.

    Article  CAS  PubMed  Google Scholar 

  118. Laffont B, Corduan A, Rousseau M, et al. Platelet microparticles reprogram macrophage gene expression and function. Thromb Haemost. 2016;115:311–23.

    Article  PubMed  Google Scholar 

  119. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–5.

    Article  CAS  PubMed  Google Scholar 

  120. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483–95.

    Article  CAS  PubMed  Google Scholar 

  121. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31:659–66.

    Article  PubMed  CAS  Google Scholar 

  122. Tijsen AJ, Creemers EE, Moerland PD, et al. MiR423-5p as a circulating biomarker for heart failure. Circ Res. 2010;106:1035–9.

    Article  CAS  PubMed  Google Scholar 

  123. Zampetaki A, Kiechl S, Drozdov I, et al. Plasma microRNA profiling reveals loss of endothelial miR-126 and other microRNAs in type 2 diabetes. Circ Res. 2010;107:810–7.

    Article  CAS  PubMed  Google Scholar 

  124. Fichtlscherer S, De Rosa S, Fox H, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84.

    Article  CAS  PubMed  Google Scholar 

  125. Andreou I, Sun X, Stone PH, Edelman ER, Feinberg MW. miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends Mol Med. 2015;21:307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Nicholls SJ, Hazen SL. Myeloperoxidase and cardiovascular disease. Arterioscler Thromb Vasc Biol. 2005;25:1102–11.

    Article  CAS  PubMed  Google Scholar 

  127. Koenig W, Twardella D, Brenner H, Rothenbacher D. Lipoprotein-associated phospholipase A2 predicts future cardiovascular events in patients with coronary heart disease independently of traditional risk factors, markers of inflammation, renal function, and hemodynamic stress. Arterioscler Thromb Vasc Biol. 2006;26:1586–93.

    Article  CAS  PubMed  Google Scholar 

  128. Forstermann U, **a N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–35.

    Article  PubMed  CAS  Google Scholar 

  129. Nowak WN, Deng J, Ruan XZ, Xu Q. Reactive oxygen species generation and atherosclerosis. Arterioscler Thromb Vasc Biol. 2017;37:e41–52.

    Article  CAS  PubMed  Google Scholar 

  130. Bochkov VN, Oskolkova OV, Birukov KG, Levonen AL, Binder CJ, Stockl J. Generation and biological activities of oxidized phospholipids. Antioxid Redox Signal. 2010;12:1009–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Binder CJ, Papac-Milicevic N, Witztum JL. Innate sensing of oxidation-specific epitopes in health and disease. Nat Rev Immunol. 2016;16:485–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kirabo A, Fontana V, de Faria AP, et al. DC isoketal-modified proteins activate T cells and promote hypertension. J Clin Invest. 2014;124:4642–56.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol. 2005;25:2255–64.

    Article  CAS  PubMed  Google Scholar 

  134. Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol. 1995;146:3–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation. 2008;117:2938–48.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Feig JE. Regression of atherosclerosis: insights from animal and clinical studies. Ann Glob Health. 2014;80:13–23.

    Article  PubMed  Google Scholar 

  137. Bittencourt MS, Cerci RJ. Statin effects on atherosclerotic plaques: regression or healing? BMC Med. 2015;13:260.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Bartolo BAD, Psaltis PJ, Bursill CA, Nicholls SJ. Translating evidence of HDL and plaque regression. Arterioscler Thromb Vasc Biol. 2018;38:1961–8.

    Article  PubMed  CAS  Google Scholar 

  139. Silvestre-Roig C, de Winther MP, Weber C, Daemen MJ, Lutgens E, Soehnlein O. Atherosclerotic plaque destabilization: mechanisms, models, and therapeutic strategies. Circ Res. 2014;114:214–26.

    Article  CAS  PubMed  Google Scholar 

  140. Ravichandran KS. Beginnings of a good apoptotic meal: the find-me and eat-me signaling pathways. Immunity. 2011;35:445–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Norata GD, Marchesi P, Pulakazhi Venu VK, et al. Deficiency of the long pentraxin PTX3 promotes vascular inflammation and atherosclerosis. Circulation. 2009;120:699–708.

    Article  CAS  PubMed  Google Scholar 

  142. Ait-Oufella H, Kinugawa K, Zoll J, et al. Lactadherin deficiency leads to apoptotic cell accumulation and accelerated atherosclerosis in mice. Circulation. 2007;115:2168–77.

    Article  CAS  PubMed  Google Scholar 

  143. Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I. Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe−/− mice. Arterioscler Thromb Vasc Biol. 2008;28:1421–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Nissen SE. Rationale for a postintervention continuum of care: insights from intravascular ultrasound. Am J Cardiol. 2000;86:12H–7H.

    Article  CAS  PubMed  Google Scholar 

  145. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med. 1987;316:1371–5.

    Article  CAS  PubMed  Google Scholar 

  146. Libby P. What have we learned about the biology of atherosclerosis? The role of inflammation. Am J Cardiol. 2001;88:3J–6J.

    CAS  PubMed  Google Scholar 

  147. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001;104:365–72.

    Article  CAS  PubMed  Google Scholar 

  148. Aday AW, Ridker PM. Antiinflammatory therapy in clinical care: the CANTOS trial and beyond. Front Cardiovasc Med. 2018;5:62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with Canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

  150. Davies MJ, Richardson PD, Woolf N, Katz DR, Mann J. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br Heart J. 1993;69:377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Wong KK, Thavornpattanapong P, Cheung SC, Sun Z, Tu J. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovasc Disord. 2012;12:1–18.

    Article  CAS  Google Scholar 

  152. Puri R, Nicholls SJ, Shao M, et al. Impact of statins on serial coronary calcification during atheroma progression and regression. J Am Coll Cardiol. 2015;65:1273–82.

    Article  CAS  PubMed  Google Scholar 

  153. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation. 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  154. Libby P, Aikawa M. Evolution and stabilization of vulnerable atherosclerotic plaques. Jpn Circ J. 2001;65:473–9.

    Article  CAS  PubMed  Google Scholar 

  155. Libby P. Molecular bases of the acute coronary syndromes. Circulation. 1995;91:2844–50.

    Article  CAS  PubMed  Google Scholar 

  156. Libby P. Act local, act global: inflammation and the multiplicity of “vulnerable” coronary plaques. J Am Coll Cardiol. 2005;45:1600–2.

    Article  PubMed  Google Scholar 

  157. Steffel J, Lüscher TF, Tanner FC. Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation. 2006;113:722–31.

    Article  CAS  PubMed  Google Scholar 

  158. Virmani R, Kolodgie FD, Burke AP, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol. 2005;25:2054–61.

    Article  CAS  PubMed  Google Scholar 

  159. Crea F, Libby P. Acute coronary syndromes: the way forward from mechanisms to precision treatment. Circulation. 2017;136:1155–66.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Libby P, Pasterkamp G. Requiem for the ‘vulnerable plaque’. Eur Heart J. 2015;36:2984–7.

    PubMed  Google Scholar 

  161. Hansson GK, Libby P, Tabas I. Inflammation and plaque vulnerability. J Intern Med. 2015;278:483–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Yahagi K, Kolodgie FD, Lutter C, et al. Pathology of human coronary and carotid artery atherosclerosis and vascular calcification in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2017;37:191–204.

    Article  CAS  PubMed  Google Scholar 

  163. Ahmadi A, Leipsic J, Blankstein R, et al. Do plaques rapidly progress prior to myocardial infarction? The interplay between plaque vulnerability and progression. Circ Res. 2015;117:99–104.

    Article  CAS  PubMed  Google Scholar 

  164. Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol. 2013;61:1041–51.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Manoharan G, Ntalianis A, Muller O, et al. Severity of coronary arterial stenoses responsible for acute coronary syndromes. Am J Cardiol. 2009;103:1183–8.

    Article  PubMed  Google Scholar 

  166. Zaman T, Agarwal S, Anabtawi AG, et al. Angiographic lesion severity and subsequent myocardial infarction. Am J Cardiol. 2012;110:167–72.

    Article  PubMed  Google Scholar 

  167. Stefanadis C, Antoniou CK, Tsiachris D, Pietri P. Coronary atherosclerotic vulnerable plaque: current perspectives. J Am Heart Assoc. 2017;6(3):e005543.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Grebe A, Latz E. Cholesterol crystals and inflammation. Curr Rhematol Rep. 2013;15:313.

    Article  CAS  Google Scholar 

  169. Abela GS. Cholesterol crystals piercing the arterial plaque and intima trigger local and systemic inflammation. J Clin Lipidol. 2010;4:156–64.

    Article  PubMed  Google Scholar 

  170. Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464:1357–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Sheedy FJ, Grebe A, Rayner KJ, et al. CD36 coordinates NLRP3 inflammasome activation by facilitating intracellular nucleation of soluble ligands into particulate ligands in sterile inflammation. Nat Immunol. 2013;14:812–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Abela GS, Kalavakunta JK, Janoudi A, et al. Frequency of cholesterol crystals in culprit coronary artery aspirate during acute myocardial infarction and their relation to inflammation and myocardial injury. Am J Cardiol. 2017;120:1699–707.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toth, P.P. (2021). Atherogenesis and Vascular Biology. In: Davidson, M.H., Toth, P.P., Maki, K.C. (eds) Therapeutic Lipidology. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-56514-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-56514-5_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-56513-8

  • Online ISBN: 978-3-030-56514-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation