Serotonin and Fibrosis

  • Chapter
  • First Online:
5-HT2B Receptors

Part of the book series: The Receptors ((REC,volume 35))

  • 462 Accesses

Abstract

Fibrosis can occur in many tissues within the body, including skin, liver, lung, heart, intestine and pancreas. The wound healing response that replaces damaged tissue with non-functional collagen-rich scar tissue to maintain the physical boundaries of the affected organ, although necessary, can lead to a progressive irreversible fibrotic response, if tissue injury is severe or repetitive, or if the wound healing response itself becomes deregulated. A ubiquitous characteristic of fibrosis is the presence of myofibroblasts, a contractile cell that deposits high amounts of fibrotic extracellular matrix including type I collagen and extra-domain A isoform of fibronectin. Disturbances in the regulation of these processes can result in a wide range of pathological conditions, which are associated with tissue fibrosis, from excessive scarring to systemic sclerosis. Clinical evidences exist suggesting a role for serotonin and serotonin agonists in fibrosis. The pro-fibrotic activity of serotonin in vivo is due at least in part to its direct effect on fibroblasts and/or myofibroblast progenitors, TGF-β serotonergic responses. Distinct serotonin receptors are involved in the fibrotic pathophysiology that is mainly mediated through signaling via 5-HT2A and 5-HT2B receptors. Pharmaceutical inhibition of these specific serotonin receptors may be beneficial for the treatment of fibrotic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

COL1A1:

Collagen 1α1

COL1A2:

Collagen 1α2

CTGF:

Connective tissue growth factor

ECM:

Extracellular matrix

FN1:

Fibronectin

MDMA-“Ecstasy”:

3,4-methylenedioxy-methamphetamine

SMA:

Smooth muscle actin

SSRI/SNRI:

Serotonin norepinephrine re-uptake inhibitors

SERT/5-HTT:

Serotonin transporter SLC6A4

αSMA:

Alpha smooth muscle actin

SSc:

Systemic sclerosis

TGF-β:

Transforming growth factor beta

TPH1:

Tryptophan hydroxylase

References

  1. Wynn TA (2008) Cellular and molecular mechanisms of fibrosis. J Pathol 214:199–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dolivo DM, Larson SA, Dominko T (2018) Tryptophan metabolites kynurenine and serotonin regulate fibroblast activation and fibrosis. Cell Mol Life Sci 75:3663–3681

    Article  CAS  PubMed  Google Scholar 

  3. Chen C, Han X, Fan F, Liu Y, Wang T, Wang J, Hu P, Ma A, Tian H (2014) Serotonin drives the activation of pulmonary artery adventitial fibroblasts and TGF-β1/Smad3-mediated fibrotic responses through 5-HT(2A) receptors. Mol Cell Biochem 397:267–276

    Article  CAS  PubMed  Google Scholar 

  4. Mitra A, Luna JI, Marusina AI, Merleev A, Kundu-Raychaudhuri S, Fiorentino D, Raychaudhuri SP, Maverakis E (2015) Dual motor inhibition is required to prevent TGF-β-mediated fibrosis: implications for scleroderma. J Invest Dermatol 135:2873–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Friedman SL, Sheppard D, Duffield JS, Violette S (2013) Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 5:167sr1

    Article  PubMed  CAS  Google Scholar 

  6. Stone RC, Pastar I, Ojeh N, Chen V, Liu S, Garzon KI, Tomic-Canic M (2016) Epithelial-mesenchymal transition in tissue repair and fibrosis. Cell Tissue Res 365(3):495–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Darby IA, Laverdet B, Bonté F, Desmoulière A (2014) Fibroblasts and myofibroblasts in wound healing. Clin Cosmet Investig Dermatol 7:301–311

    PubMed  PubMed Central  Google Scholar 

  8. Froese AR, Shimbori C, Bellaye PS, Inman M, Obex S, Fatima S, Jenkins G, Gauldie J, Ask K, Kolb M (2016) Stretch-induced activation of transforming growth factor-β1 in pulmonary fibrosis. Am J Respir Crit Care Med 194(1):84–96

    Article  CAS  PubMed  Google Scholar 

  9. Wynn TA, Barron L (2010) Macrophages: master regulators of inflammation and fibrosis. Semin Liver Dis 30(3):245–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wipff J, Bonnet P, Ruiz B, Dieude P, Avouac J, Tiev K, Hachulla E, Cracowski JL, Diot E, Sibilia J, Mouthon L, Meyer O, Kahan A, Boileau C, Allanore Y (2010) Association study of serotonin transporter gene (SLC6A4) in systemic sclerosis in European Caucasian populations. J Rheumatol 37(6):1164–1167

    Article  CAS  PubMed  Google Scholar 

  11. Zhang J, Cui R, Feng Y, Gao W, Bi J, Li Z, Liu C (2018) Serotonin exhibits accelerated bleomycin-induced pulmonary fibrosis through TPH1 knockout mouse experiments. Mediat Inflamm 2018:7967868

    Google Scholar 

  12. Rosenberg T, Lattimer R, Montgomery P, Wiens C, Levy L (1984) The relationship of SSRI and SNRI usage with interstitial lung disease and bronchiectasis in an elderly population: a case-control study. Clin Interv Aging 12:1977–1984

    Article  Google Scholar 

  13. Druce M, Rockall A (2009) Fibrosis and carcinoid syndrome: from causation to future therapy. Nat Rev Endocrinol 5:276–283

    Article  PubMed  Google Scholar 

  14. Woodard PK, Feldman JM, Paine SS, Baker ME (1995) Midgut carcinoid tumors: CT findings and biochemical profiles. J Comput Assist Tomogr 19:400–405

    Article  CAS  PubMed  Google Scholar 

  15. Rodríguez Laval V, Pavel M, Steffen IG, Baur AD, Dilz LM, Fischer C, Detjen K, Prasad V, Pascher A, Geisel D, Denecke T (2018) Mesenteric fibrosis in midgut neuroendocrine tumors: functionality and radiological features. Neuroendocrinology 106:139–147

    Article  PubMed  CAS  Google Scholar 

  16. Bazan IS, Fares WH (2016) Review of the ongoing story of appetite suppressants, serotonin pathway, and pulmonary vascular disease. Am J Cardiol 117:1691–1696

    Article  CAS  PubMed  Google Scholar 

  17. Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, Rothman RB, Roth BL (2003) 3,4-methylenedioxymethamphetamine (MDMA, “Ecstasy”) induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro. Mol Pharmacol 63:1223–1229

    Article  CAS  PubMed  Google Scholar 

  18. Reimund E (1987) Methysergide and retroperitoneal fibrosis. Lancet 1(8530):443

    Article  CAS  PubMed  Google Scholar 

  19. Antonini A, Poewe W (2007) Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson’s disease. Lancet Neurol 6:826–829

    Article  CAS  PubMed  Google Scholar 

  20. Schulz JN, Plomann M, Sengle G, Gullberg D, Krieg T, Eckes B (2018) New developments on skin fibrosis - essential signals emanating from the extracellular matrix for the control of myofibroblasts. Matrix Biol 68-69:522–532

    Article  CAS  PubMed  Google Scholar 

  21. Hutcheson JD, Ryzhova LM, Setola V, Merryman WD (2012) 5-HT(2B) antagonism arrests non-canonical TGF-β1-induced valvular myofibroblast differentiation. J Mol Cell Cardiol 53:707–714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dees C, Akhmetshina A, Zerr P, Reich N, Palumbo K, Horn A, Jüngel A, Beyer C, Krönke G, Zwerina J, Reiter R, Alenina N, Maroteaux L, Gay S, Schett G, Distler O, Distler JH (2011) Platelet-derived serotonin links vascular disease and tissue fibrosis. J Exp Med 208:961–972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Distler O, Cozzio A (2016) Systemic sclerosis and localized scleroderma--current concepts and novel targets for therapy. Semin Immunopathol 38:87–95

    Article  CAS  PubMed  Google Scholar 

  24. Fabre A, Marchal-Sommé J, Marchand-Adam S, Quesnel C, Borie R, Dehoux M, Ruffié C, Callebert J, Launay JM, Hénin D, Soler P, Crestani B (2008) Modulation of bleomycin-induced lung fibrosis by serotonin receptor antagonists in mice. Eur Respir J 32:426–436

    Article  CAS  PubMed  Google Scholar 

  25. Löfdahl A, Rydell-Törmänen K, Larsson-Callerfelt AK, Wenglén C, Westergren-Thorsson G (2018) Pulmonary fibrosis in vivo displays increased p21 expression reduced by 5-HT2B receptor antagonists in vitro - a potential pathway affecting proliferation. Sci Rep 8:1927

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Chaturvedi S, Misra DP, Prasad N, Rastogi K, Singh H, Rai MK, Agarwal V (2018) 5-HT2 and 5-HT2B antagonists attenuate pro-fibrotic phenotype in human adult dermal fibroblasts by blocking TGF-β1 induced non-canonical signaling pathways including STAT3: implications for fibrotic diseases like scleroderma. Int J Rheum Dis 21:2128–2138

    Article  CAS  PubMed  Google Scholar 

  27. Mann DA, Oakley F (2013) Serotonin paracrine signaling in tissue fibrosis. Biochim Biophys Acta 1832:905–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ruddell RG, Oakley F, Hussain Z, Yeung I, Bryan-Lluka LJ, Ramm GA, Mann DA (2006) A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am J Pathol 169:861–876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ebrahimkhani MR, Oakley F, Murphy LB, Mann J, Moles A, Perugorria MJ, Ellis E, Lakey AF, Burt AD, Douglass A, Wright MC, White SA, Jaffré F, Maroteaux L, Mann DA (2011) Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease. Nat Med 17:1668–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Omenetti A, Yang L, Gainetdinov RR, Guy CD, Choi SS, Chen W, Caron MG, Diehl AM (2011) Paracrine modulation of cholangiocyte serotonin synthesis orchestrates biliary remodeling in adults. Am J Physiol Gastrointest Liver Physiol 300:G303–G315

    Article  CAS  PubMed  Google Scholar 

  31. Königshoff M, Dumitrascu R, Udalov S, Amarie OV, Reiter R, Grimminger F, Seeger W, Schermuly RT, Eickelberg O (2010) Increased expression of 5-hydroxytryptamine2A/B receptors in idiopathic pulmonary fibrosis: a rationale for therapeutic intervention. Thorax 65:949–955

    Article  PubMed  Google Scholar 

  32. Elaidy SM, Essawy SS (2016) The antifibrotic effect of alveolar macrophages 5-HT2C receptor blockade on bleomycin-induced fibrosis in rats. Pharmacol Rep 68:1244–1253

    Article  CAS  PubMed  Google Scholar 

  33. Domínguez-Soto Á, Usategui A, Casas-Engel ML, Simón-Fuentes M, Nieto C, Cuevas VD, Vega MA, Luis Pablos J, Corbí ÁL (2017) Serotonin drives the acquisition of a profibrotic and anti-inflammatory gene profile through the 5-HT7R-PKA signaling axis. Sci Rep 7:14761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tawfik MK, Makary S (2017) 5-HT7 receptor antagonism (SB-269970) attenuates bleomycin-induced pulmonary fibrosis in rats via downregulating oxidative burden and inflammatory cascades and ameliorating collagen deposition: comparison to terguride. Eur J Pharmacol 814:114–123

    Article  CAS  PubMed  Google Scholar 

  35. Mekontso-Dessap A, Brouri F, Pascal O, Lechat P, Hanoun N, Lanfumey L, Seif I, Benhaiem-Sigaux N, Kirsch M, Hamon M, Adnot S, Eddahibi S (2006) Deficiency in the 5-hydroxytryptamine transporter gene leads to cardiac fibrosis and valvulopathy in mice. Circulation 113:81–89

    Article  CAS  PubMed  Google Scholar 

  36. Janssen W, Schymura Y, Novoyatleva T, Kojonazarov B, Boehm M, Wietelmann A, Luitel H, Murmann K, Krompiec DR, Tretyn A, Pullamsetti SS, Weissmann N, Seeger W, Ghofrani HA, Schermuly RT (2015) 5-HT2B receptor antagonists inhibit fibrosis and protect from RV heart failure. Biomed Res Int 2015:1–8

    Google Scholar 

  37. Jaffré F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay JM, Maroteaux L, Monassier L (2004) Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts. Circulation 110:969–974

    Article  PubMed  CAS  Google Scholar 

  38. Yabanoglu S, Akkiki M, Seguelas MH, Mialet-Perez J, Parini A, Pizzinat N (2009) Platelet derived serotonin drives the activation of rat cardiac fibroblasts by 5-HT2A receptors. J Mol Cell Cardiol 46:518–525

    Article  CAS  PubMed  Google Scholar 

  39. Jaffré F, Bonnin P, Callebert J, Debbabi H, Setola V, Doly S, Monassier L, Mettauer B, Blaxall BC, Launay JM, Maroteaux L (2009) Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy. Circ Res 104:113–123

    Article  PubMed  CAS  Google Scholar 

  40. Rogler G, Hausmann M (2017) Factors promoting development of fibrosis in Crohn’s disease. Front Med 4:96

    Article  Google Scholar 

  41. Grubelic Ravić K, Paić F, Vucelić B, Brinar M, Čuković-Čavka S, Božina N, Krznarić Ž, Kalauz M, Bešić D, Nikuševa Martić T (2018) Association of polymorphic variants in serotonin re-uptake transporter gene with Crohn’s disease: a retrospective case-control study. Croat Med J 59:232–243

    Article  PubMed  CAS  Google Scholar 

  42. Daskalakis K, Karakatsanis A, Stålberg P, Norlén O, Hellman P (2017) Clinical signs of fibrosis in small intestinal neuroendocrine tumors. Br J Surg 104:69–75

    Article  CAS  PubMed  Google Scholar 

  43. Ogawa T, Sugidachi A, Tanaka N, Fujimoto K, Fukushige J, Tani Y, Asai F (2005) Effects of R-102444 and its active metabolite R-96544, selective 5-HT2A receptor antagonists, on experimental acute and chronic pancreatitis: additional evidence for possible involvement of 5-HT2A receptors in the development of experimental pancreatitis. Eur J Pharmacol 521:156–163

    Article  CAS  PubMed  Google Scholar 

  44. McCall CM, Shi C, Klein AP, Konukiewitz B, Edil BH, Ellison TA, Wolfgang CL, Schulick RD, Klöppel G, Hruban RH (2012) Serotonin expression in pancreatic neuroendocrine tumors correlates with a trabecular histologic pattern and large duct involvement. Hum Pathol 43:1169–1176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Korman B (2019) Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl Res 2019:S1931–S5244

    Google Scholar 

  46. Bruni C, Praino E, Allanore Y, Distler O, Gabrielli A, Iannone F, Matucci-Cerinic M (2017) Use of biologics and other novel therapies for the treatment of systemic sclerosis. Expert Rev Clin Immunol 13:469–482

    Article  CAS  PubMed  Google Scholar 

  47. Ntelis K, Solomou EE, Sakkas L, Liossis SN, Daoussis D (2017) The role of platelets in autoimmunity, vasculopathy, and fibrosis: implications for systemic sclerosis. Semin Arthritis Rheum 47:409–417

    Article  CAS  PubMed  Google Scholar 

  48. Stegemann A, Sindrilaru A, Eckes B, del Rey A, Heinick A, Schulte JS, Müller FU, Grando SA, Fiebich BL, Scharffetter-Kochanek K, Luger TA, Böhm M (2013) Tropisetron suppresses collagen synthesis in skin fibroblasts via α7 nicotinic acetylcholine receptor and attenuates fibrosis in a scleroderma mouse model. Arthritis Rheum 65:792–804

    Article  CAS  PubMed  Google Scholar 

  49. Beretta L, Cossu M, Marchini M, Cappiello F, Artoni A, Motta G, Scorza R (2008) A polymorphism in the human serotonin 5-HT2A receptor gene may protect against systemic sclerosis by reducing platelet aggregation. Arthritis Res Ther 10:R103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Hazelwood LA, Sanders-Bush E (2004) His452Tyr polymorphism in the human 5-HT2A receptor destabilizes the signaling conformation. Mol Pharmacol 66:1294–1300

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Distler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Distler, O., Neidhart, M., Błyszczuk, P. (2021). Serotonin and Fibrosis. In: Maroteaux, L., Monassier, L. (eds) 5-HT2B Receptors. The Receptors, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-55920-5_13

Download citation

Publish with us

Policies and ethics

Navigation