Recent Trends in Fabrication and Applications of Wearable Bioelectronics for Early-Stage Disease Monitoring and Diagnosis

  • Chapter
  • First Online:
Macro, Micro, and Nano-Biosensors

Abstract

Modern technology has offered many ways to use chemical and biosensors effectively in detecting various analytes in environmental, medical, and food samples. Recently, people have started to use wearable devices to track various kinds of information about their health and fitness level. The market of wearable devices in 2015 was $5 billion which showed 25% enhancement over 2014, and it is further expected to grow for the next 5 years. The primary focus of this chapter is to bring the latest developments on nanofabricated wearable devices which integrated on the epidermis, thereby analyzing by a non-invasive and non-obtrusive fashion. We have given more emphasis on the recent developments in the fabrication methodologies toward the chemical and biosensor for physical parameter measurements of heart rate, glucose, temperature, and pressure levels. To prepare wearable devices, nanomaterials such as 2D graphene, 1D carbon nanotubes, conducting polymers, and noble metal nanoparticles have been used as transducers. There are various challenges in recording the real-time measurements on human body during physical movements when there are drastic changes in the temperature, pressure, and humidity of the device, so these parameters have to be taken into account during flexible sensor device manufacturing. There are further developments on wearable devices which can track the health of patients, and also depending on the need, it can release drug into the body in a controlled manner for a timely diagnosis. We have also discussed the need of wearable devices and their use as temperature/motion sensor, respiration rate analyzer, heart rate and blood pressure monitoring, detecting the level of glucose, lactate, pH, etc. In addition, therapeutic applications and future hopes of wearable sensors have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

SERS:

Surface Enhanced Raman Spectroscopy

PEDOT:PSS:

Poly(3,4-ethylenedioxythiophene):polystyrene sulfonate

PDMS:

Polydimethylsiloxane

CNTs:

Carbon nanotubes

GO:

Graphene oxide

rGO:

Reduced graphene oxide

BN:

Boron nitride

MoS2:

Molybdenum disulfide

WS2:

Tungsten disulfide

RFID:

Radio-frequency identification

PTC:

Positive temperature coefficient

NTC:

Negative temperature coefficient

Ag NWs:

Silver nanowires

Ag NPs:

Silver nanoparticles

PET:

Polyethylene terephthalate

SEBS:

Styrene-ethylene-butadiene-styrene

SWCNTs:

Single-walled carbon nanotubes

PU:

Polyurethane

FSSF:

Free-standing stretchable fiber

b.p.m:

Beats per minute

HR:

Heart rate

ECG:

Electrocardiography

PVDF:

Poly(vinylidene fluoride)

PVDF-TrFE:

poly(vinylidene fluoride-co-trifluoroethylene)

PEIE:

Ethoxylatedpolyethylenimine

MWCNTs:

multiwalled carbon nanotubes

VS:

vinylsiloxane

PFTs:

Pulmonary function tests

wPt:

Wrinkled platinum

IC:

Inspiratory capacity

ESMF:

Etched single mode fiber

CB:

Carbon black

MLGs:

Multilayer graphene platelets

Au NW:

Gold nanowire

ROA:

Reflectance oximeter array

H2O2:

Hydrogen peroxide

LED:

Light emitting diode

OCET:

Organic electrochemical transistor

Na+ ion:

Sodium ion

References

  • Anastasova S, Crewther B, Bembnowicz P, Curto V, Ip HMD, Rosa B, Yang G-Z (2017) A wearable multisensing patch for continuous sweat monitoring. Biosens Bioelectron 93:139–145

    Article  CAS  PubMed  Google Scholar 

  • Aroganam G, Manivannan N, Harrison D (2019) Review on wearable technology sensors used in consumer sport applications. Sensors 19:1983

    Article  Google Scholar 

  • Bandodkar AJ, Wang J (2014) Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol 32:363–371

    Article  CAS  PubMed  Google Scholar 

  • Bizzotto D, Burgess IJ, Doneux T, Sagara T, Yu H-Z (2018) Beyond simple cartoons: challenges in characterizing electrochemical biosensor interfaces. ACS Sens 3:5–12

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Shen J, Dai Z, Zang X, Dong Q, Guan G, Li L, Huang W, Dong X (2017) Extraordinarily stretchable all-carbon collaborative Nanoarchitectures for epidermal sensors. Adv Mater 29:1606411

    Article  CAS  Google Scholar 

  • Chen Y, Lu B, Chen Y, Feng X (2015) Breathable and stretchable temperature sensors inspired by skin. Sci Rep 5:11505

    Article  PubMed  PubMed Central  Google Scholar 

  • Choo DC, Bae SK, Kim TW (2019) Flexible, transparent patterned electrodes based on graphene oxide/silver nanowire nanocomposites fabricated utilizing an accelerated ultraviolet/ozone process to control silver nanowire degradation. Sci Rep 9:5527

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chu M, Nguyen T, Pandey V, Zhou Y, Pham HN, Bar-Yoseph R, Radom-Aizik S, Jain R, Cooper DM, Khine M (2019) Respiration rate and volume measurements using wearable strain sensors. NPJ Digit Med 2:8

    Article  PubMed  PubMed Central  Google Scholar 

  • Coelho M, Giarola J, da Silva A, Tarley C, Borges K, Pereira A (2016) Development and application of electrochemical sensor based on molecularly imprinted polymer and carbon nanotubes for the determination of carvedilol. Chemosensors 4:22

    Article  CAS  Google Scholar 

  • Compagnone D, Di Francia G, Di Natale C, Neri G, Seeber R, Tajani A (2017) Chemical sensors and biosensors in Italy: a review of the 2015 literature. Sensors 17:868

    Article  Google Scholar 

  • Currano LJ, Sage FC, Hagedon M, Hamilton L, Patrone J, Gerasopoulos K (2018) Wearable sensor system for detection of lactate in sweat. Sci Rep 8:15890

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Drotlef D, Amjadi M, Yunusa M, Sitti M (2017) Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv Mater 29:1701353

    Article  CAS  Google Scholar 

  • Du B, Yang D, She X, Yuan Y, Mao D, Jiang Y, Lu F (2017) MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery. Sensors Actuators B Chem 251:180–184

    Article  CAS  Google Scholar 

  • Duan Y, Huang Y, Chen S, Zuo W, Shi B (2019) Cu-doped carbon dots as catalysts for the Chemiluminescence detection of glucose. ACS Omega 4:9911–9917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911

    Article  CAS  PubMed  Google Scholar 

  • Geršak V, Vitulić HS, Prosen S, Starc G, Humar I, Geršak G (2020) Use of wearable devices to study activity of children in classroom; case study—learning geometry using movement. Comput Commun 150:581–588

    Article  Google Scholar 

  • Godfrey A, Hetherington V, Shum H, Bonato P, Lovell NH, Stuart S (2018) From A to Z: wearable technology explained. Maturitas 113:40–47

    Article  CAS  PubMed  Google Scholar 

  • Gong S, Schwalb W, Wang Y, Chen Y, Tang Y, Si J, Shirinzadeh B, Cheng W (2014) A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat Commun 5:1–8

    CAS  Google Scholar 

  • Group, D.P.P.R, Knowler WC, Fowler SE, Hamman RF, Christophi CA, Hoffman HJ, Brenneman AT, Brown-Friday JO, Goldberg R, Venditti E, Nathan DM (2009) 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 374:1677–1686

    Article  Google Scholar 

  • Ha M, Lim S, Ko H (2018) Wearable and flexible sensors for user-interactive health-monitoring devices. J Mater Chem B 6:4043–4064

    Article  CAS  PubMed  Google Scholar 

  • Hazarika P (2016) Implementation of smart safety helmet for coal mine workers. In: 2016 IEEE 1st international conference power electronics, intelligent control and energy systems (ICPEICES), p 1–3

    Google Scholar 

  • He J, **ao P, Shi J, Liang Y, Lu W, Chen Y, Wang W, Théato P, Kuo S-W, Chen T (2018) High performance humidity fluctuation sensor for wearable devices via a bioinspired atomic-precise tunable graphene-polymer heterogeneous sensing junction. Chem Mater 30:4343–4354

    Article  CAS  Google Scholar 

  • Heikenfeld J, Jajack A, Rogers J, Gutruf P, Tian L, Pan T, Li R, Khine M, Kim J, Wang J (2018) Wearable sensors: modalities, challenges, and prospects. Lab Chip 18:217–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hulanicki A, Glab S, Ingman F (1991) Chemical sensors: definitions and classification. Pure Appl Chem 63:1247–1250

    Article  Google Scholar 

  • Izmailova ES, Wagner JA, Perakslis ED (2018) Wearable devices in clinical trials: hype and hypothesis. Clin Pharmacol Ther 104:42–52

    Article  PubMed  PubMed Central  Google Scholar 

  • Jeevanandham G, Jerome R, Murugan N, Preethika M, Vediappan K, Sundramoorthy AK (2020) Nickel oxide decorated MoS2 nanosheet-based non-enzymatic sensor for the selective detection of glucose. RSC Adv 10:643–654

    Article  CAS  Google Scholar 

  • Kanao K, Harada S, Yamamoto Y, Honda W, Arie T, Akita S, Takei K (2015) Highly selective flexible tactile strain and temperature sensors against substrate bending for an artificial skin. RSC Adv 5:30170–30174

    Article  CAS  Google Scholar 

  • Khan Y, Ostfeld AE, Lochner CM, Pierre A, Arias AC (2016) Monitoring of vital signs with flexible and wearable medical devices. Adv Mater 28:4373–4395

    Article  CAS  PubMed  Google Scholar 

  • Khan Y, Han D, Pierre A, Ting J, Wang X, Lochner CM, Bovo G, Yaacobi-Gross N, Newsome C, Wilson R (2018) A flexible organic reflectance oximeter array. Proc Natl Acad Sci 115:E11015–E11024

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Ahn J-H (2017) Graphene for flexible and wearable device applications. Carbon N Y 120:244–257

    Article  CAS  Google Scholar 

  • Kottmann J, Rey JM, Luginbühl J, Reichmann E, Sigrist MW (2012) Glucose sensing in human epidermis using mid-infrared photoacoustic detection. Biomed Opt Express 3:667–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraft U, Molina-Lopez F, Son D, Bao Z, Murmann B (2020) Ink development and printing of conducting polymers for intrinsically stretchable interconnects and circuits. Adv Electron Mater 6:1900681

    Article  CAS  Google Scholar 

  • Kumar SA, Cheng H-W, Chen S-M, Wang S-F (2010) Preparation and characterization of copper nanoparticles/zinc oxide composite modified electrode and its application to glucose sensing. Mater Sci Eng C 30:86–91

    Article  CAS  Google Scholar 

  • Lee Y-H, Kim J-S, Noh J, Lee I, Kim HJ, Choi S, Seo J, Jeon S, Kim T-S, Lee J-Y (2013) Wearable textile battery rechargeable by solar energy. Nano Lett 13:5753–5761

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Choi TK, Lee YB, Cho HR, Ghaffari R, Wang L, Choi HJ, Chung TD, Lu N, Hyeon T (2016) A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat Nanotechnol 11:566

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Ren G, Zhang Z, Teng C, Wu Y, Lu X, Zhu Y, Jiang L (2016) A strong and highly flexible aramid nanofibers/PEDOT: PSS film for all-solid-state supercapacitors with superior cycling stability. J Mater Chem A 4:17324–17332

    Article  CAS  Google Scholar 

  • Li Q, Zhang J, Li Q, Li G, Tian X, Luo Z, Qiao F, Wu X, Zhang J (2019) Review of printed electrodes for flexible devices. Front Mater 5(77)

    Google Scholar 

  • Lin C-C, Yang C-Y, Zhou Z, Wu S (2018) Intelligent health monitoring system based on smart clothing. Int J Distrib Sens Netw 14:1550147718794318

    Article  Google Scholar 

  • Lochner CM, Khan Y, Pierre A, Arias AC (2014) All-organic optoelectronic sensor for pulse oximetry. Nat Commun 5:5745

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Wei H, Li J, Yao G, Yu B, Ni D, Gibson ALF, Lan X, Jiang Y, Cai W (2018) Effective wound healing enabled by discrete alternative electric fields from wearable Nanogenerators. ACS Nano 12:12533–12540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo X, Shi W, Yu H, **e Z, Li K, Cui Y (2018) Wearable carbon nanotube-based biosensors on gloves for lactate. Sensors 18:3398

    Article  CAS  Google Scholar 

  • Mannoor MS, Tao H, Clayton JD, Sengupta A, Kaplan DL, Naik RR, Verma N, Omenetto FG, McAlpine MC (2012) Graphene-based wireless bacteria detection on tooth enamel. Nat Commun 3:763

    Article  PubMed  CAS  Google Scholar 

  • Mardonova M, Choi Y (2018) Review of wearable device technology and its applications to the mining industry. Energies 11:547

    Article  Google Scholar 

  • Mehrotra P (2016) Biosensors and their applications–a review. J Oral Biol Craniofacial Res 6:153–159

    Article  Google Scholar 

  • Mohanraj J, Durgalakshmi D, Rakkesh RA, Balakumar S, Rajendran S, Karimi-Maleh H (2020) Facile synthesis of paper based graphene electrodes for point of care devices: a double stranded DNA (dsDNA) biosensor. J Colloid Interface Sci 566:463–472

    Article  CAS  PubMed  Google Scholar 

  • Nakata S, Shiomi M, Fujita Y, Arie T, Akita S, Takei K (2018) A wearable pH sensor with high sensitivity based on a flexible charge-coupled device. Nat Electron 1:596

    Article  Google Scholar 

  • Olesen BW (1982) Thermal comfort. Tech Rev 2:3–37

    Google Scholar 

  • Ota H, Chao M, Gao Y, Wu E, Tai L-C, Chen K, Matsuoka Y, Iwai K, Fahad HM, Gao W (2017) 3d printed “earable” smart devices for real-time detection of core body temperature. ACS Sens 2:990–997

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim J, Kim SY, Cheong WH, Jang J, Park YG, Na K, Kim YT, Heo JH, Lee CY (2018) Soft, smart contact lenses with integrations of wireless circuits, glucose sensors, and displays. Sci Adv 4:eaap9841

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pegan JD, Zhang J, Chu M, Nguyen T, Park S-J, Paul A, Kim J, Bachman M, Khine M (2016) Skin-mountable stretch sensor for wearable health monitoring. Nanoscale 8:17295–17303

    Article  CAS  PubMed  Google Scholar 

  • Pickup JC, Hussain F, Evans ND, Rolinski OJ, Birch DJS (2005) Fluorescence-based glucose sensors. Biosens Bioelectron 20:2555–2565

    Article  CAS  PubMed  Google Scholar 

  • Pruvost M, Smit WJ, Monteux C, Poulin P, Colin A (2019) Polymeric foams for flexible and highly sensitive low-pressure capacitive sensors. NPJ Flex Electron 3:7

    Article  CAS  Google Scholar 

  • Rathee K, Dhull V, Dhull R, Singh S (2016) Biosensors based on electrochemical lactate detection: a comprehensive review. Biochem Biophys Rep 5:35–54

    Google Scholar 

  • Rehman MM, Siddiqui GU, Doh YH, Choi KH (2017) Highly flexible and electroforming free resistive switching behavior of tungsten disulfide flakes fabricated through advanced printing technology. Semicond Sci Technol 32:95001

    Article  CAS  Google Scholar 

  • Rinaldi A, Tamburrano A, Fortunato M, Sarto M (2016) A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets. Sensors 16:2148

    Article  CAS  Google Scholar 

  • Rodger DC, Weiland JD, Humayun MS, Tai Y-C (2006) Scalable high lead-count parylene package for retinal prostheses. Sensors Actuators B Chem 117:107–114

    Article  CAS  Google Scholar 

  • Sekine T, Sugano R, Tashiro T, Sato J, Takeda Y, Matsui H, Kumaki D, Dos Santos FD, Miyabo A, Tokito S (2018) Fully printed wearable vital sensor for human pulse rate monitoring using ferroelectric polymer. Sci Rep 8:4442

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan J, Li J, Chu X, Xu M, ** F, Wang X, Ma L, Fang X, Wei Z, Wang X (2018) High sensitivity glucose detection at extremely low concentrations using a MoS2-based field-effect transistor. RSC Adv 8:7942–7948

    Article  CAS  Google Scholar 

  • Shinde A, Sahatiya P, Kadu A, Badhulika S (2019) Wireless smartphone-assisted personal healthcare monitoring system using a MoS2-based flexible, wearable and ultra-low-cost functional sensor. Flex Print Electron 4:25003

    Article  CAS  Google Scholar 

  • Siddiqui GU, Rehman MM, Yang Y-J, Choi KH (2017) A two-dimensional hexagonal boron nitride/polymer nanocomposite for flexible resistive switching devices. J Mater Chem C 5:862–871

    Article  Google Scholar 

  • Singh E, Singh P, Kim KS, Yeom GY, Nalwa HS (2019) Flexible molybdenum disulfide (MoS2) atomic layers for wearable electronics and optoelectronics. ACS Appl Mater Interfaces 11:11061–11105

    Article  CAS  PubMed  Google Scholar 

  • Steiner M-S, Dürkop A, Wolfbeis O (2011) Optical methods for sensing glucose. Chem Soc Rev 40:4805–4839

    Article  CAS  PubMed  Google Scholar 

  • Sundramoorthy AK, Wang Y-C, Gunasekaran S (2015a) Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Res 8:3430–3445

    Article  CAS  Google Scholar 

  • Sundramoorthy AK, Wang Y, Wang J, Che J, Thong YX, Lu ACW, Chan-Park MB (2015b) Lateral assembly of oxidized graphene flakes into large-scale transparent conductive thin films with a three-dimensional surfactant 4-sulfocalix [4] arene. Sci Rep 5:10716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trung TQ, Dang TML, Ramasundaram S, Toi PT, Park SY, Lee N-E (2018) A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature. ACS Appl Mater Interfaces 11:2317–2327

    Article  CAS  Google Scholar 

  • Wang S, Chinnasamy T, Lifson MA, Inci F, Demirci U (2016) Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol 34:909–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Zhang T, Zhang J, Huang J, Tang X, Zhou T, Rong Y, Huang Y, Shi S, Zeng D (2020) A new approach for an ultrasensitive tactile sensor covering an ultrawide pressure range based on the hierarchical pressure-peak effect. Nanoscale Horiz 5:541–552

    Article  CAS  PubMed  Google Scholar 

  • Xuan X, Yoon HS, Park JY (2018) A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens Bioelectron 109:75–82

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Yamamoto D, Takada M, Naito H, Arie T, Akita S, Takei K (2017) Efficient skin temperature sensor and stable gel-less sticky ECG sensor for a wearable flexible healthcare patch. Adv Healthc Mater 6:1700495

    Article  CAS  Google Scholar 

  • Yan C, Wang J, Lee PS (2015) Stretchable graphene thermistor with tunable thermal index. ACS Nano 9:2130–2137

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Yu J-H, Strickler JR, Chang W-J, Gunasekaran S (2013) Nickel nanoparticle–chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosens Bioelectron 47:530–538

    Article  CAS  PubMed  Google Scholar 

  • Yao H, Shum AJ, Cowan M, Lähdesmäki I, Parviz BA (2011) A contact lens with embedded sensor for monitoring tear glucose level. Biosens Bioelectron 26:3290–3296

    Article  CAS  PubMed  Google Scholar 

  • Yogeswaran U, Chen S-M (2008) A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 8:290–313

    Article  CAS  PubMed  Google Scholar 

  • Yoon Y, Lee G, Yoo K, Lee J-B (2013) Fabrication of a microneedle/CNT hierarchical micro/nano surface electrochemical sensor and its in-vitro glucose sensing characterization. Sensors 13:16672–16681

    Article  PubMed  CAS  Google Scholar 

  • Zaryanov NV, Nikitina VN, Karpova EV, Karyakina EE, Karyakin AA (2017) Nonenzymatic sensor for lactate detection in human sweat. Anal Chem 89:11198–11202

    Article  CAS  PubMed  Google Scholar 

  • Zhou HP, Ye X, Huang W, Wu MQ, Mao LN, Yu B, Xu S, Levchenko I, Bazaka K (2019) Wearable, flexible, disposable plasma-reduced graphene oxide stress sensors for monitoring activities in Austere environments. ACS Appl Mater Interfaces 11:15122–15132

    Article  CAS  PubMed  Google Scholar 

  • Zhu B, Niu Z, Wang H, Leow WR, Wang H, Li Y, Zheng L, Wei J, Huo F, Chen X (2014) Microstructured graphene arrays for highly sensitive flexible tactile sensors. Small 10:3625–3631

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Chortos A, Wang Y, Pfattner R, Lei T, Hinckley AC, Pochorovski I, Yan X, To JW-F, Oh JY (2018) Stretchable temperature-sensing circuits with strain suppression based on carbon nanotube transistors. Nat Electron 1:183

    Article  Google Scholar 

  • Zou M, Ma Y, Yuan X, Hu Y, Liu J, ** Z (2018) Flexible devices: from materials, architectures to applications. J Semicond 39:11010

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Science and Engineering Research Board, India (Ref. No.: ECR/2016/001446). We also thank DST (International Bilateral Cooperation Division) for financial support through “INDO-RUSSIA Project (File No.: INT/RUS/RFBR/385).” RDN thanks SRM IST for Ph.D. student fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok K. Sundramoorthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nagarajan, R.D., Sundramoorthy, A.K. (2021). Recent Trends in Fabrication and Applications of Wearable Bioelectronics for Early-Stage Disease Monitoring and Diagnosis. In: Rai, M., Reshetilov, A., Plekhanova, Y., Ingle, A.P. (eds) Macro, Micro, and Nano-Biosensors. Springer, Cham. https://doi.org/10.1007/978-3-030-55490-3_18

Download citation

Publish with us

Policies and ethics

Navigation