Visual Causality: Investigating Graph Layouts for Understanding Causal Processes

  • Conference paper
  • First Online:
Diagrammatic Representation and Inference (Diagrams 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12169))

Included in the following conference series:

Abstract

Causal diagrams provide a graphical formalism indicating how statistical models can be used to study causal processes. Despite the extensive research on the efficacy of aesthetic graphic layouts, the causal inference domain has not benefited from the results of this research. In this paper, we investigate the performance of graph visualisations for supporting users’ understanding of causal graphs. Two studies were conducted to compare graph visualisations for understanding causation and identifying confounding variables in a causal graph. The first study results suggest that while adjacency matrix layouts are better for understanding direct causation, node-link diagrams are better for understanding mediated causation along causal paths. The second study revealed that node-link layouts, and in particular layouts created by a radial algorithm, are more effective for identifying confounder and collider variables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allender, S., et al.: A community based systems diagram of obesity causes. PLoS One 10(7), e0129683 (2015)

    Article  Google Scholar 

  2. Bae, J., et al.: Develo** and evaluating quilts for the depiction of large layered graphs. IEEE TVCG 17(12), 2268–2275 (2011)

    Google Scholar 

  3. Behrisch, M., et al.: Matrix reordering methods for table and network visualization. Comput. Graph. Forum 35(3), 693–716 (2016)

    Article  Google Scholar 

  4. Bennett, C., et al.: The aesthetics of graph visualization. In: Proceedings of the 2007 Computational Aesthetics in Graphics, Visualization, and Imaging, pp. 57–64 (2007)

    Google Scholar 

  5. Braveman, P., Gottlieb, L.: The social determinants of health: it’s time to consider the causes of the causes. Public Health Rep. 129(2), 19–31 (2014)

    Article  Google Scholar 

  6. Burch, M., et al.: Evaluation of traditional, orthogonal, and radial tree diagrams by an eye tracking study. IEEE TVCG 17(12), 2440–2448 (2011)

    Google Scholar 

  7. Dang, T., et al.: ReactionFlow: an interactive visualization tool for causality analysis in biological pathways. BMC Proc. 9, S6 (2015)

    Article  Google Scholar 

  8. Di Battista, G.: Graph Drawing: Algorithms for the Visualization of Graphs. An Alan R. Apt Book. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  9. Draper, G., et al.: A survey of radial methods for information visualization. IEEE Trans. Vis. Comput. Graph. 15(5), 759–776 (2009)

    Article  Google Scholar 

  10. Elmqvist, N., Tsigas, P.: Causality visualization using animated growing polygons. In: Proceedings of IEEE Information Visualization 2003, vol. 2003, pp. 189–196. IEEE (2003)

    Google Scholar 

  11. Garaigordobil, M., et al.: Childhood depression: relation to adaptive, clinical and predictor variables. Front. Psychol. 8(MAY), 1–9 (2017). https://doi.org/10.3389/fpsyg.2017.00821

    Article  Google Scholar 

  12. Ghoniem, M., et al.: A comparison of the readability of graphs using node-link and matrix-based representations. In: Proceedings of IEEE Information Visualization, pp. 17–24 (2004)

    Google Scholar 

  13. Government, U.: Reducing obesity: obesity system map, tackling obesities: future choices – building the obesity system map (2007). https://www.gov.uk/government/publications/reducing-obesity-obesity-system-map

  14. Heer, J., Robertson, G.: Animated transitions in statistical data graphics. IEEE TVCG 13(6), 1240–1247 (2007)

    Google Scholar 

  15. Henry, N., Fekete, J.D.: MatrixExplorer: a dual-representation system to explore social networks. IEEE TVCG 12(5), 677–684 (2006)

    Google Scholar 

  16. Henry, N., et al.: NodeTrix: a hybrid visualization of social networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302–1309 (2007)

    Article  Google Scholar 

  17. Higgins, J.J., Tashtoush, S.: An aligned rank transform test for interaction. Nonlinear World 1(2), 201–211 (1994)

    MathSciNet  MATH  Google Scholar 

  18. Keatley, D.A., et al.: Lay understanding of the causes of binge drinking in the United Kingdom and Australia: a network diagram approach. Health Educ. Res. 32(1), cyw056 (2017)

    Article  Google Scholar 

  19. Keller, R., et al.: Matrices or node-link diagrams: which visual representation is better for visualising connectivity models? Inf. Vis. 5(1), 62–76 (2006)

    Article  Google Scholar 

  20. von Landesberger, T., et al.: Visual analysis of large graphs: state-of-the-art and future research challenges. Comput. Graph. Forum 30(6), 1719–1749 (2011)

    Article  Google Scholar 

  21. Liiv, I.: Seriation and matrix reordering methods: an historical overview. Stat. Anal. Data Min. 8(5), 70–91 (2010)

    MathSciNet  Google Scholar 

  22. McGrath, C., et al.: The effect of spatial arrangement on judgments and errors in interpreting graphs. Soc. Netw. 19(3), 223–242 (1997)

    Article  Google Scholar 

  23. McQuire, C., et al.: The causal web of foetal alcohol spectrum disorders: a review and causal diagram. Eur. Child Adolesc. Psychiatr. 29(5), 575–594 (2019). https://doi.org/10.1007/s00787-018-1264-3

    Article  Google Scholar 

  24. Pearl, J.: Causal diagrams for empirical research. Biometrika 82(4), 669–688 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  25. Purchase, H.C., et al.: Empirical evaluation of aesthetics-based graph layout. Empir. Softw. Eng. 7(3), 233–255 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roberts, J.C.: State of the art: coordinated & multiple views in exploratory visualization. In: Fifth International Conference on Coordinated and Multiple Views in Exploratory Visualization (CMV 2007), pp. 61–71. IEEE (2007)

    Google Scholar 

  27. Scheines, R., et al.: The TETRAD project: constraint based aids to causal model specification. Multivar. Behav. Res. 33(1), 65–117 (1998)

    Article  Google Scholar 

  28. Shen, Z., Ma, K.L.: Path visualization for adjacency matrices. In: Museth, K., et al. (eds.) Eurographics/ IEEE-VGTC Symposium on Visualization. The Eurographics Association (2007)

    Google Scholar 

  29. Sugiyama, K., Misue, K.: Visualization of structural information: automatic drawing of compound digraphs. IEEE Trans. Syst. Man Cybern. 21(4), 876–892 (1991)

    Article  MathSciNet  Google Scholar 

  30. Textor, J., et al.: DAGitty: a graphical tool for analyzing causal diagrams. Epidemiology (Cambridge, Mass.) 22(5), 745 (2011)

    Article  Google Scholar 

  31. Vehlow, C., Beck, F., Weiskopf, D.: The state of the art in visualizing group structures in graphs. In: Borgo, R., et al. (eds.) Eurographics Conference on Visualization (EuroVis) - STARs. The Eurographics Association (2015)

    Google Scholar 

  32. Wang, J., Mueller, K.: The visual causality analyst: an interactive interface for causal reasoning. IEEE TVCG 22(1), 230–239 (2016)

    Google Scholar 

  33. Wobbrock, J.O., et al.: The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of CHI 2011, p. 143. ACM Press, New York (2011)

    Google Scholar 

  34. Wright, S.: Correlation and causation. J. Agric. Res. 20(7), 557–585 (1921)

    Google Scholar 

  35. yWorks: yEd Graph Editor. http://www.yworks.com/products/yed

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Bach Vo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vo, DB., Lazarova, K., Purchase, H.C., McCann, M. (2020). Visual Causality: Investigating Graph Layouts for Understanding Causal Processes. In: Pietarinen, AV., Chapman, P., Bosveld-de Smet, L., Giardino, V., Corter, J., Linker, S. (eds) Diagrammatic Representation and Inference. Diagrams 2020. Lecture Notes in Computer Science(), vol 12169. Springer, Cham. https://doi.org/10.1007/978-3-030-54249-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-54249-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-54248-1

  • Online ISBN: 978-3-030-54249-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation