T-Cell Therapeutics: Donor Lymphocyte Infusion, Cytotoxic T-Lymphocyte Infusion, and Other Non-CAR T-Cell Therapies

  • Chapter
  • First Online:
Blood and Marrow Transplant Handbook

Abstract

Cellular therapy is an integral part of cancer immunotherapy, which is now considered as the fourth pillar of cancer treatment after surgery, chemotherapy, and radiotherapy. Allogeneic hematopoietic cell transplantation (HCT) is considered the most classic example of cellular immunotherapy. Post-transplant interplay between host and donor immune reactive cells plays a major role in graft-versus-leukemia (GvL) effect and graft-versus-host disease (GvHD). Immune reconstitution of the T-cell repertoire has major implications for relapsed disease, GvHD, and post-transplant viral infections. This chapter will focus on the exciting development in cellular therapy in the context of HCT and cell therapy including discussion of the diverse repertoire of T-cell products, specifically donor lymphocyte infusion (DLI), regulatory T cells, cytotoxic T lymphocytes for viral infections, and T-cell receptor gene-modified T cells. In addition, the underlying pathophysiology and mechanism of action of cell-mediated effects with a focus on evidence from clinical studies elaborating the indications, efficacy ,and safety of these T-cell-mediated therapies will be discussed, along with a brief overview of future directions and clinical trials exploring the potential of novel cell-mediated therapies in post-transplant settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Peggs KS, Mackinnon S. Cellular therapy: donor lymphocyte infusion. Curr Opin Hematol. 2001;8(6):349–54.

    Article  CAS  PubMed  Google Scholar 

  2. Guillaume T, Porcheron S, Audat F, et al. Prophylactic, preemptive and curative use of donor lymphocyte infusion in patients undergoing allogeneic stem cell transplantation: guidelines of the SFGM-TC. Pathol Biol. 2014;62(4):193–6.

    Article  CAS  PubMed  Google Scholar 

  3. Castagna L, Sarina B, Bramanti S, et al. Donor lymphocyte infusion after allogeneic stem cell transplantation. Transfus Apher Sci. 2016;54(3):345–55.

    Article  PubMed  Google Scholar 

  4. Nikiforow S, Alyea EP. Maximizing GVL in allogeneic transplantation: role of donor lymphocyte infusions. Hematology Am Soc Hematol Educ Program. 2014;2014(1):570–5.

    Article  PubMed  Google Scholar 

  5. Frey NV, Porter DL. Graft-versus-host disease after donor leukocyte infusions: presentation and management. Best Pract Res Clin Haematol. 2008;21(2):205–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roddie C, Peggs KS. Donor lymphocyte infusion following allogeneic hematopoietic stem cell transplantation. Expert Opin Biol Ther. 2011;11(4):473–87.

    Article  PubMed  Google Scholar 

  7. Chang YJ, Huang XJ. Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Rev. 2013;27(1):55–62.

    Article  CAS  PubMed  Google Scholar 

  8. El-Jurdi N, Reljic T, Kumar A, et al. Efficacy of adoptive immunotherapy with donor lymphocyte infusion in relapsed lymphoid malignancies. Immunotherapy. 2013;5(5):457–66.

    Article  CAS  PubMed  Google Scholar 

  9. Orti G, Barba P, Fox L, et al. Donor lymphocyte infusions in AML and MDS: enhancing the graft-versus-leukemia effect. Exp Hematol. 2017;48:1–11.

    Article  CAS  PubMed  Google Scholar 

  10. Stamouli M, Gkirkas K, Tsirigotis P. Strategies for improving the efficacy of donor lymphocyte infusion following stem cell transplantation. Immunotherapy. 2016;8(1):57–68.

    Article  CAS  PubMed  Google Scholar 

  11. Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003;3(3):253–7.

    Article  CAS  PubMed  Google Scholar 

  12. Uhl FM, Zeiser R. Regulatory T cells: broadening applicability. Cell and gene therapy. Perales MA, Abutalib SA, Bollard C. Chapter 9, pages 159–180 Series: Advances and Controversies in Hematopoietic Cell Transplantation and Cell Therapy. Series Eds. Abutalib SA, Armitage JO. Springer Switzerland 2019.

    Google Scholar 

  13. Belizário JE, Brandão W, Rossato C, Peron JP. Thymic and postthymic regulation of naïve CD4(+) T-cell lineage fates in humans and mice models. Mediat Inflamm. 2016;2016:9523628.

    Article  CAS  Google Scholar 

  14. Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4. Science. 2011;332(6029):600–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang CT, Workman CJ, Flies D, et al. Role of LAG-3 in regulatory T cells. Immunity. 2004;21(4):503–13.

    Article  CAS  PubMed  Google Scholar 

  16. Pandiyan P, Zheng L, Ishihara S, et al. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–62.

    Article  CAS  PubMed  Google Scholar 

  17. Rubtsov YP, Rasmussen JP, Chi EY, et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity. 2008;28(4):546–58.

    Article  CAS  PubMed  Google Scholar 

  18. Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature. 2007;450(7169):566–9.

    Article  CAS  PubMed  Google Scholar 

  19. Chen w JW, Hardegen N, et al. Conversion of peripheral CD4+CD25−naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nguyen VH, Zeiser R, Dasilva DL, et al. In vivo dynamics of regulatory T-cell trafficking and survival predict effective strategies to control graft-versus-host disease following allogeneic transplantation. Blood. 2007;109(6):2649–56.

    Article  CAS  PubMed  Google Scholar 

  21. Deaglio S, Dwyer KM, Gao W, et al. Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med. 2007;204(6):1257–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zeiser R, Nguyen VH, Hou JZ, et al. Early CD30 signaling is critical for adoptively transferred CD4+CD25+ regulatory T cells in prevention of acute graft-versus-host disease. Blood. 2007;109(5):2225–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pierini A, Colonna L, Alvarez M, et al. Donor requirements for regulatory T cell suppression of murine graft-versus-host disease. J Immunol. 2015;195(1):347–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.

    Article  PubMed  CAS  Google Scholar 

  25. Brunstein CG, Miller JS, McKenna DH, et al. Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood. 2016;127(8):1044–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115(19):3861–8.

    Article  CAS  PubMed  Google Scholar 

  27. Koreth J, Kim HT, Jones KT, et al. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft-versus-host disease. Blood. 2016;128(1):130–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cobbold M, Khan N, Pourgheysari B, et al. Adoptive transfer of cytomegalovirus-specific CTL to stem cell transplant patients after selection by HLA-peptide tetramers. J Exp Med. 2005;202(3):379–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zandvliet ML, van Liempt E, Jedema I, et al. Co-ordinated isolation of CD8(+) and CD4(+) T cells recognizing a broad repertoire of cytomegalovirus pp65 and IE1 epitopes for highly specific adoptive immunotherapy. Cytotherapy. 2010;12(7):933–44.

    Article  CAS  PubMed  Google Scholar 

  30. Withers B, Blyth E, Clancy LE, et al. Long-term control of recurrent or refractory viral infections after allogeneic HSCT with third-party virus-specific T cells. Blood Adv. 2017;1(24):2193–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134(1):64–76.

    Article  PubMed  Google Scholar 

  32. Neuenhahn M, Albrecht J, Odendahl M, et al. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after Allo-HSCT. Leukemia. 2017;31(10):2161–71.

    Article  CAS  PubMed  Google Scholar 

  33. Blyth E, Clancy L, Simms R, et al. Donor-derived CMV-specific T cells reduce the requirement for CMV-directed pharmacotherapy after allogeneic stem cell transplantation. Blood. 2013;121(18):3745–58.

    Article  CAS  PubMed  Google Scholar 

  34. Walter EA, Greenberg PD, Gilbert MJ, et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med. 1995;333(16):1038–44.

    Article  CAS  PubMed  Google Scholar 

  35. Peggs KS, Verfuerth S, Pizzey A, et al. Adoptive cellular therapy for early cytomegalovirus infection after allogeneic stem-cell transplantation with virus-specific T-cell lines. Lancet. 2003;362(9393):1375–7.

    Article  PubMed  Google Scholar 

  36. Perruccio K, Tosti A, Burchielli E, et al. Transferring functional immune responses to pathogens after haploidentical hematopoietic transplantation. Blood. 2005;106(13):4397–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Peggs KS, Thomson K, Samuel E, et al. Directly selected cytomegalovirus-reactive donor T cells confer rapid and safe systemic reconstitution of virus-specific immunity following stem cell transplantation. Clin Infect Dis. 2011;52(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  38. Peggs KS, Verfuerth S, Pizzey A, et al. Cytomegalovirus-specific T cell immunotherapy promotes restoration of durable functional antiviral immunity following allogeneic stem cell transplantation. Clin Infect Dis. 2009;49(12):1851–60.

    Article  CAS  PubMed  Google Scholar 

  39. Micklethwaite K, Hansen A, Foster A, et al. Ex vivo expansion and prophylactic infusion of CMV-pp65 peptide-specific cytotoxic T-lymphocytes following allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2007;13(6):707–14.

    Article  CAS  PubMed  Google Scholar 

  40. Einsele H, Roosnek E, Rufer N, et al. Infusion of cytomegalovirus (CMV)-specific T cells for the treatment of CMV infection not responding to antiviral chemotherapy. Blood. 2002;99(11):3916–22.

    Article  CAS  PubMed  Google Scholar 

  41. Feuchtinger T, Opherk K, Bethge WA, et al. Adoptive transfer of pp65-specific T cells for the treatment of chemorefractory cytomegalovirus disease or reactivation after haploidentical and matched unrelated stem cell transplantation. Blood. 2010;116(20):4360–7.

    Article  CAS  PubMed  Google Scholar 

  42. Leen AM, Christin A, Myers GD, et al. Cytotoxic T lymphocyte therapy with donor T cells prevents and treats adenovirus and Epstein-Barr virus infections after haploidentical and matched unrelated stem cell transplantation. Blood. 2009;114(19):4283–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Leen AM, Myers GD, Sili U, et al. Monoculture-derived T lymphocytes specific for multiple viruses expand and produce clinically relevant effects in immunocompromised individuals. Nat Med. 2006 Oct;12(10):1160–6.

    Article  CAS  PubMed  Google Scholar 

  44. Ma CK, Blyth E, Clancy L, et al. Addition of varicella zoster virus-specific T cells to cytomegalovirus, Epstein-Barr virus and adenovirus tri-specific T cells as adoptive immunotherapy in patients undergoing allogeneic hematopoietic stem cell transplantation. Cytotherapy. 2015;17(10):1406–20s.

    Article  CAS  PubMed  Google Scholar 

  45. Papadopoulou A, Gerdemann U, Katari UL, et al. Activity of broad-spectrum T cells as treatment for AdV, EBV, CMV, BKV, and HHV6 infections after HSCT. Sci Transl Med. 2014;6(242):242ra83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Hanley PJ, Melenhorst JJ, Nikiforow S, et al. CMV-specific T cells generated from naive T cells recognize atypical epitopes and may be protective in vivo. Sci Transl Med. 2015;7(285):285ra63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Hanley PJ. Build a bank: off-the-shelf virus-specific T cells. Biol Blood Marrow Transplant. 2018;24(12):e9–e10.

    Article  PubMed  Google Scholar 

  48. Tzannou I, Papadopoulou A, Naik S, et al. Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, Epstein-Barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2017;35(31):3547–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Leen AM, Bollard CM, Mendizabal AM, et al. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2016;51(9):1163–72.

    CAS  Google Scholar 

  50. O’Reilly RJ, Prockop S, Hasan AN, et al. Virus-specific T-cell banks for 'off the shelf' adoptive therapy of refractory infections. Bone Marrow Transplant. 2016;51(9):1163–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Withers B, Clancy L, Burgess J, et al. Establishment and operation of a third-party virus-specific T cell bank within an allogeneic stem cell transplant program. Biol Blood Marrow Transplant. 2018;24(12):2433–42. https://doi.org/10.1016/j.bbmt.2018.08.024.

    Article  CAS  PubMed  Google Scholar 

  52. Riaz N, Morris L, Havel JJ, et al. The role of neoantigens in response to immune checkpoint blockade. Int Immunol. 2016;28(8):411–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Morgan RA, Dudley JR, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314:126–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Rapoport AP, Stadtmauer EA, Binder-Scholl GK, et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat Med. 2015;21(8):914–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Morgan RA, Chinnasamy N, Abate-Daga A, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Van den Berg JH, Gomez-Eerland R, Van de Wiel B, et al. Case report of a fatal serious adverse event upon administration of T cells transduced with a MART-1-specific T-cell receptor. Mol Ther. 2015;23(9):1541–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Johnson LA, Morgan RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114:535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Parkhurst MR, Yang JC, Langan RC, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011;19:620–6.

    Article  CAS  PubMed  Google Scholar 

  59. van den Berg JH, Gomez-Eerland R, van de Wiel B, et al. Case report of a fatal serious adverse event upon administration of T cells transduced with a MART-1-specific T-cell receptor. Mol Ther. 2015;23(9):1541–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Linette GP, Stadtmauer EA, Maus MV, et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013;122:863–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gargett T, Brown MP. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front Pharmacol. 2014;5:235.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Further Readings

    Donor Lymphocyte Infusion

    • Castagna L, Sarina B, Bramanti S, et al. Donor lymphocyte infusion after allogeneic stem cell transplantation. Transfus Apher Sci. 2016;54(3):345–55.

      Article  PubMed  Google Scholar 

    • Chang YJ, Huang XJ. Donor lymphocyte infusions for relapse after allogeneic transplantation: when, if and for whom? Blood Rev. 2013;27(1):55–62.

      Article  CAS  PubMed  Google Scholar 

    • Ciceri F, Bonini C, Marktel S, et al. Antitumor effects of HSV-TK-engineered donor lymphocytes after allogeneic stem-cell transplantation. Blood. 2007;109(11):4698–707.

      Article  CAS  PubMed  Google Scholar 

    • De Vos J, Baudoux E, Bay JO, et al. Prophylactic, preemptive and curative use of donor lymphocyte infusion in patients undergoing allogeneic stem cell transplantation: guidelines of the SFGM-TC. Bull Cancer. 2018.10.002.

      Google Scholar 

    • El-Jurdi N, Reljic T, Kumar A, et al. Efficacy of adoptive immunotherapy with donor lymphocyte infusion in relapsed lymphoid malignancies. Immunotherapy. 2013;5(5):457–66.

      Article  CAS  PubMed  Google Scholar 

    • Frey NV, Porter DL. Graft-versus-host disease after donor leukocyte infusions: presentation and management. Best Pract Res Clin Haematol. 2008;21(2):205–22.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    • Goldsmith SR, Slade M, DiPersio JF, et al. Donor-lymphocyte infusion following haploidentical hematopoietic cell transplantation with peripheral blood stem cell grafts and PTCy. Bone Marrow Transplant. 2017;52(12):1623–8.

      Article  CAS  PubMed  Google Scholar 

    • Miller JS, Warren EH, van den Brink MR, et al. NCI first international workshop on the biology, prevention, and treatment of relapse after allogeneic hematopoietic stem cell transplantation: report from the committee on the biology underlying recurrence of malignant disease following allogeneic HSCT: graft-versus-tumor/leukemia reaction. Biol Blood Marrow Transplant. 2010;16(5):565–86.

      Article  PubMed  PubMed Central  Google Scholar 

    • Zeidan AM, Forde PM, Symons H, et al. HLA-haploidentical donor lymphocyte infusions for patients with relapsed hematologic malignancies after related HLA-haploidentical bone marrow transplantation. Biol Blood Marrow Transplant. 2014;20(3):314–8.

      Article  CAS  PubMed  Google Scholar 

    Regulatory T (Treg) Cells

    • Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003;3(3):253–7.

      Article  CAS  PubMed  Google Scholar 

    • Di Ianni M, Falzetti F, Carotti A, et al. Tregs prevent GVHD and promote immune reconstitution in HLA-haploidentical transplantation. Blood. 2011;117(14):3921–8.

      Article  PubMed  CAS  Google Scholar 

    • Koreth J, Kim HT, Jones KT, et al. Efficacy, durability, and response predictors of low-dose interleukin-2 therapy for chronic graft vs. host disease. Blood. 2016;128(1):130–7.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    • Mohty M, Gaugler B, Faucher C, et al. Recovery of lymphocyte and dendritic cell subsets following reduced intensity allogeneic bone marrow transplantation. Hematology. 2002;7(3):157–64.

      Article  CAS  PubMed  Google Scholar 

    • Pandiyan P, Zheng L, Ishihara S, et al. CD4 + CD25 + Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat Immunol. 2007;8(12):1353–62.

      Article  CAS  PubMed  Google Scholar 

    • Pierini A, Colonna L, Alvarez M, et al. Donor requirements for regulatory T cell suppression of murine graft-versus-host disease. J Immunol. 2015;195(1):347–55.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    • Seggewiss R, Einsele H. Immune reconstitution after allogeneic transplantation and expanding options for immunomodulation: an update. Blood. 2010;115(19):3861–8.

      Article  CAS  PubMed  Google Scholar 

    • Whangbo JS, Kim HT, Nikiforow S, et al. Functional analysis of clinical response to low-dose IL-2 in patients with refractory chronic graft-versus-host disease. Blood Adv. 2019;3(7):984–94.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    • Williams KM, Gress RE. Immune reconstitution and implications for immunotherapy following haematopoietic stem cell transplantation. Best Pract Res Clin Haematol. 2008;21(3):579–96.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    Cytotoxic T Lymphocytes for Viral Infections

    • Baugh KA, Tzannou I, Leen AM. Infusion of cytotoxic T lymphocytes for the treatment of viral infections in hematopoetic stem cell transplant patients. Curr Opin Infect Dis. 2018;31(4):292–300.

      Article  PubMed  Google Scholar 

    • Feuchtinger T, Matthes-Martin S, Richard C, et al. Safe adoptive transfer of virus-specific T-cell immunity for the treatment of systemic adenovirus infection after allogeneic stem cell transplantation. Br J Haematol. 2006;134:64–76.

      Article  PubMed  Google Scholar 

    • Hanley PJ. Build a bank: off-the-shelf virus-specific T cells. Biol Blood Marrow Transplant. 2018;24(12)

      Google Scholar 

    • Neuenhahn M, Albrecht J, Odendahl M, et al. Transfer of minimally manipulated CMV-specific T cells from stem cell or third-party donors to treat CMV infection after allo-HSCT. Leukemia. 2017;31:2161–71.

      Article  CAS  PubMed  Google Scholar 

    • Tzannou I, Papadopoulou A, Naik S, et al. Off-the-shelf virus-specific T cells to treat BK virus, human herpesvirus 6, cytomegalovirus, epstein-barr virus, and adenovirus infections after allogeneic hematopoietic stem-cell transplantation. J Clin Oncol. 2017;35:3547–57.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    • Withers B, Blyth E, Clancy LE, et al. Long-term control of recurrent or refractory viral infections after allogeneic HSCT with third-party virus-specific T cells. Blood Adv. 2017;1:2193–205.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    T-Cell Receptors-Gene-Modified T Cells for Cancer Treatment

    • Duong CP, Yong CS, Kershaw MH, et al. Cancer immunotherapy utilizing gene-modified T-cells: from the bench to the clinic. Mol Immunol. 2015;67(2 Pt A):46–57.

      Article  CAS  PubMed  Google Scholar 

    • Gilham DE, Anderson J, Bridgeman JS, et al. Adoptive T-cell therapy for cancer in the United Kingdom: a review of activity for the British Society of Gen and Cell Therapy annual meeting 2015. Hum Gene Ther. 2015;26:276–85.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    • Rapoport AP, Yared JA. T-cell receptor (TCR)-gene modified T-cells for cancer – methods, data and challenges. Springer. Advances & controversies in hematopoietic cell transplants and cell therapy. Series editors: Syed A. Abutalib M.D. & James O. Armitage M.D. Volume 3. Cell and gene therapy. Volume editors – Miguel-Angel Perales M.D., Syed A. Abutalib MD & Catherine Bollard MD 10.1007/978-3-319-54368-0.

      Google Scholar 

    • Thomas S, Stauss HJ, Morris EC. Molecular immunology lessons from therapeutic T-cell receptor gene transfer. Immunology. 2010;129(2):170–7.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    Download references

    Author information

    Authors and Affiliations

    Authors

    Editor information

    Editors and Affiliations

    Rights and permissions

    Reprints and permissions

    Copyright information

    © 2021 Springer Nature Switzerland AG

    About this chapter

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this chapter

    Hashmi, H., Majhail, N., Abutalib, S.A., Rapoport, A.P., Yared, J.A. (2021). T-Cell Therapeutics: Donor Lymphocyte Infusion, Cytotoxic T-Lymphocyte Infusion, and Other Non-CAR T-Cell Therapies. In: Maziarz, R.T., Slater, S.S. (eds) Blood and Marrow Transplant Handbook. Springer, Cham. https://doi.org/10.1007/978-3-030-53626-8_55

    Download citation

    • DOI: https://doi.org/10.1007/978-3-030-53626-8_55

    • Published:

    • Publisher Name: Springer, Cham

    • Print ISBN: 978-3-030-53625-1

    • Online ISBN: 978-3-030-53626-8

    • eBook Packages: MedicineMedicine (R0)

    Publish with us

    Policies and ethics

    Navigation