A Comparison of Robust Model Choice Criteria Within a Metalearning Study

  • Conference paper
  • First Online:
Analytical Methods in Statistics (AMISTAT 2019)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 329))

Included in the following conference series:

  • 576 Accesses

Abstract

The methodology of automatic method selection (metalearning) allows to recommend the most suitable method (e.g. algorithm or statistical estimator) from several alternatives for a given dataset, based on information learned over a training database of datasets. Practitioners have become accustomed to using metalearning in the context of regression modeling, which is useful in a variety of applications in different fields. Still, none of previous metalearning studies on regression targeted at regression complexity issues and the majority of available metalearning studies for regression considered the standard mean square error as the prediction error measure. In this paper, a metalearning study focused on comparing different method selection criteria for the regression task is presented. A prediction rule, recommending the best regression estimator (possibly robust), is constructed over 31 training datasets. These are publicly available datasets, in which the linear model was carefully examined to be suitable. The results with the highest classification accuracy are obtained if the choice of the best estimator is based on robust versions of Akaike information criterion, particularly the version derived from MM-estimators. The work also advocates an implicitly weighted robust prediction mean square error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B., Csaki, F. (eds.) Second International Symposium on Information Theory, pp. 267–281. Budapest, Academiai Kaido (1973)

    Google Scholar 

  2. Borra, S., Di Ciaccio, A.: Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods. Comput. Statist. Data Anal. 54, 2976–2989 (2010)

    Article  MathSciNet  Google Scholar 

  3. Brazdil, P., Giraud-Carrier, C., Soares, C., Vilalta, E.: Metalearning: Applications to Data Mining. Springer, Berlin (2009)

    Book  Google Scholar 

  4. Brazdil, P., Giraud-Carrier, C.: Metalearning and algorithm selection: progress, state of the art and introduction to the 2018 special issue. Mach. Learn. 107, 1–14 (2018)

    Article  MathSciNet  Google Scholar 

  5. California housing dataset. https://github.com/ageron/handson-ml/tree/master/datasets/housing (2019)

  6. Collins, A., Beel, J., Tkaczyk, D.: One-at-a-time: A meta-learning recommender-system for recommendation-algorithm selection on micro level. Ar**v:1805.12118 (2020)

  7. Crotti, R., Misrahi, T.: The Travel & Tourism Competitiveness Report 2015. Growth Through Shocks. World Economic Forum, Geneva (2015)

    Google Scholar 

  8. Dua, D., Graff, C.: UCI Machine Learning Repository. University of California, Irvine. http://archive.ics.uci.edu/ml (2019)

  9. Ewald, R.: Automatic Algorithm Selection for Complex Simulation Problems. Vieweg+Teubner Verlag, Wiesbaden (2012)

    Book  Google Scholar 

  10. Guo, Y., Hastie, T., Tibshirani, R.: Regularized discriminant analysis and its application in microarrays. Biostatistics 8, 86–100 (2007)

    Article  Google Scholar 

  11. Güney, Y., Tuaç, Y., Özdemir, Ş., Arslan, O.: Conditional maximum Lq-likelihood estimation for regression model with autoregressive error terms. Ar**v:1804.07600 (2020)

  12. Haykin, S.O.: Neural Networks and Learning Machines: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  13. Huber, P.J., Ronchetti, E.M.: Robust Statistics, 2nd edn. Wiley, New York (2009)

    Book  Google Scholar 

  14. Jurečková, J., Picek, J., Schindler, M.: Robust Statistical Methods with R, 2nd edn. CRC Press, Boca Raton (2019)

    Book  Google Scholar 

  15. Jurečková, J., Sen, P.K., Picek, J.: Methodology in Robust and Nonparametric Statistics. CRC Press, Boca Raton (2013)

    MATH  Google Scholar 

  16. Kalina, J.: On robust information extraction from high-dimensional data. Serb. J. Manage. 9, 131–144 (2014)

    Article  Google Scholar 

  17. Kalina, J.: Three contributions to robust regression diagnostics. J. Appl. Math. Stat. Inf. 11(2), 69–78 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Kalina, J.: On Sensitivity of Metalearning: An Illustrative Study for Robust Regression. In: Proceedings ISNPS 2018. Accepted (in press) (2020)

    Google Scholar 

  19. Kersche, P., Hoos, H.H., Neumann, F., Trautmann, H.: Automated algorithm selection: survey and perspectives. Evol. Comput. 27, 3–45 (2018)

    Article  Google Scholar 

  20. Kmenta, J.: Elements of Econometrics. Macmillan, New York (1986)

    MATH  Google Scholar 

  21. Koenker, R.: Quantile Regression. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  22. Koller, M., Mächler, M.: Defintions of \(\psi \)-functions available in Robustbase. https://cran.r-project.org/web/packages/robustbase/vignettes/ (2019)

  23. Kudová, P.: Learning with Regularization Networks. Dissertation thesis. MFF UK, Prague (2006)

    Google Scholar 

  24. Lorena, A.C., Maciel, A.I., de Miranda, P.B.C., Costa, I.G., Prudêncio, R.B.C.: Data complexity meta-features for regression problems. Mach. Learn. 107, 209–246 (2018)

    Article  MathSciNet  Google Scholar 

  25. Luo, G.: A review of automatic selection methods for machine learning algorithms and hyper-parameter values. Network Model. Anal. Health Inf. Bioinform. 5, 5–18 (2016)

    Article  Google Scholar 

  26. Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibián-Barrera, M., Verbeke, T., Koller, M., Conceicao, E.L.T., di Palma, M.A.: Robustbase: Basic Robust Statistics R package version 0.92-7 (2016)

    Google Scholar 

  27. Maronna, R.A., Martin, R.D., Yohai, V.J., Salibián-Barrera, M.: Robust Statistics: Theory and Methods (with R), 2nd edn. Wiley, Oxford (2019)

    MATH  Google Scholar 

  28. Reif, M., Shafait, F., Dengel, A.: Meta-learning for evolutionary parameter optimization of classifiers. Mach. Learn. 87, 357–380 (2012)

    Article  MathSciNet  Google Scholar 

  29. Ridd, P., Giraud-Carrier, C.: Using metalearning to predict when parameter optimization is likely to improve classification accuracy. In: Proceedings International Conference on Metalearning and Algorithm Selection MLAS’14, pp. 18–23 (2014)

    Google Scholar 

  30. Roelant, E., Van Aelst, S., Willems, G.: The minimum weighted covariance determinant estimator. Metrika 70, 177–204 (2009)

    Article  MathSciNet  Google Scholar 

  31. Ronchetti, E.: Robust model selection in regression. Stat. Prob. Lett. 3, 21–23 (1985)

    Article  MathSciNet  Google Scholar 

  32. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)

    Book  Google Scholar 

  33. Rousseeuw, P.J., van Driessen, K.: Computing LTS regression for large datasets. Data Mining Knowl. Discovery 12, 29–45 (2006)

    Article  MathSciNet  Google Scholar 

  34. Rusiecki, A., Kordos, M., Kamiński, T., Greń, K.: Training neural networks on noisy data. Lect. Notes Comput. Sci. 8467, 131–142 (2014)

    Article  Google Scholar 

  35. Smucler, E., Yohai, V.J.: Robust and sparse estimators for linear regression models. Comput. Stat. Data Anal. 111, 116–130 (2017)

    Article  MathSciNet  Google Scholar 

  36. Spaeth, H.: Mathematical Algorithms for Linear Regression. Academic Press, Cambridge (1991)

    Google Scholar 

  37. Tharmaratnam, K., Claeskens, G.: A comparison of robust versions of the AIC based on M-S- and MM-estimators. Statistics 47, 216–235 (2013)

    Article  MathSciNet  Google Scholar 

  38. Vanschoren, J.: Metalearning. In Hutter, F., Kotthoff, L., Vanschoren, J. (eds.): Automated Machine Learning. Methods, Systems, Challenges, Chap. 2, pp. 35–61. Springer, Cham (2019)

    Google Scholar 

  39. Vasant, P.M.: Meta-Heuristics Optimization Algorithms in Engineering, Business, Economics, and Finance. IGI Global, Hershey (2012)

    Google Scholar 

  40. Víšek, J.Á.: Robust error-term-scale estimate. IMS Collect. 7, 254–267 (2010)

    MathSciNet  Google Scholar 

  41. Víšek, J.Á.: Consistency of the least weighted squares under heteroscedasticity. Kybernetika 47, 179–206 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Wang, G., Song, Q., Sun, H., Zhang, X., Xu, B., Zhou, Y.: A feature subset selection algorithm automatic recommendation method. J. Artif. Intell. Res. 47, 1–34 (2013)

    Article  Google Scholar 

  43. Wilcox, R.R.: Introduction to Robust Estimation and Hypothesis Testing, 3rd edn. Elsevier, Waltham (2012)

    MATH  Google Scholar 

  44. Yohai, V.J.: High breakdown-point and high efficiency robust estimates for regression. Ann. Stat. 15, 642–656 (1987)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was supported by the grants GA18-23827S (P. Vidnerová) and GA19-05704S (J. Kalina) of the Czech Science Foundation. The authors are grateful to Aleš Neoral for technical help and to the referee and the editor for their time and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kalina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidnerová, P., Kalina, J., Güney, Y. (2020). A Comparison of Robust Model Choice Criteria Within a Metalearning Study. In: Maciak, M., Pešta, M., Schindler, M. (eds) Analytical Methods in Statistics. AMISTAT 2019. Springer Proceedings in Mathematics & Statistics, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-030-48814-7_7

Download citation

Publish with us

Policies and ethics

Navigation