Aspergillus Mycotoxins: Potential as Biocontrol Agents

  • Chapter
  • First Online:
Agriculturally Important Fungi for Sustainable Agriculture

Part of the book series: Fungal Biology ((FUNGBIO))

Abstract

The fungal genus Aspergillus was established in 1729, and includes species that are adapted to a wide range of environmental conditions. The genus Aspergillus is among the most abundant and widely distributed organisms on earth, and at the moment comprises 339 known species. Although they are not considered to be major cause of plant diseases, Aspergillus species are responsible for several disorders in various plants and plant products, especially as opportunistic storage molds. The notable consequence of their presence is contamination of foods and feeds by mycotoxins, among which the most important are aflatoxins, sterigmatocystin, ochratoxins, fumonisins, patulin, gliotoxin and cyclopiazonic acid. Mycotoxins are secondary metabolites of fungi. Species assigned to the Aspergillus genus produce a wide range of mycotoxins which can contaminate several agricultural products, and cause various human and animal diseases. Mycotoxins are carcinogenic, nephrotoxic, teratogenic, and immunotoxic in rats and possibly in humans. Mycotoxins might play a role in terms of economic and safe farming procedure. The effects of mycotoxins on insects have already been addressed by several research groups 50 years ago. Mycotoxins can cause toxicity to insects, nematodes including insecticidal effects and developmental delay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abado-Becognee K, Fleurat-Lessard F, Creppy EE, Melcion D (1998) Effects of fumonisin B1 on growth and metabolism of larvae of the yellow mealworm Tenebrio molitor. Entomol Exp Appl 86:135–143

    CAS  Google Scholar 

  • Abarca ML, Bragulat MR, Sastella G, Cabañas FJ (1994) Ochratoxin A production by strains of Aspergillus niger var. niger. Appl Environ Microbiol 60(7):2650–2652

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abarca ML, Accensi F, Bragulat MR, Cabañas FJ (2001) Current importance of ochratoxin A-producing Aspergillus spp. J Food Prot 64(6):903–906

    CAS  PubMed  Google Scholar 

  • Adegoke GO, Letuma P (2013) Mycotoxin and food safety in develo** countries, strategies for the prevention and reduction of mycotoxin in develo** countries. In: Makun HA (ed) Mycotoxin and food safety in develo** countries. InTech, Rijeka, pp 123–136

    Google Scholar 

  • Afolabi CG, Ojiambo PS, Ekpo EJA, Menkir A, Bandyopadhyay R (2007) Evaluation of maize inbred lines for resistance to Fusarium ear rot and fumonisin accumulation in grain in tropical Africa. Plant Dis 91:279–286

    CAS  PubMed  Google Scholar 

  • Aish JL, Rippon EH, Barlow T, Hattersley SJ (2004) Particular mycotoxins: Ochratoxin A. In: Magan N, Olsen M (eds) Mycotoxins in food detection and control. Springer, New York, pp 307–338

    Google Scholar 

  • Alderman GG, Marth EH (1976) Inhibition of growth and aflatoxin production of Aspergillus Parasiticus by citrus oils Z. Lebensm Unters Forsch 160:353–358

    CAS  Google Scholar 

  • Aliaa RES (2008) Control of root-rot diseases of Phaseolus vulgaris using gliotoxin. Malays J Microbiol 4(1):40–43

    Google Scholar 

  • Alonso VA, Pereyra CM, Keller LAM, Dalcero AM, Rosa CAR, Chiacchiera SM, Cavaglieri LR (2013) Fungi and mycotoxins in silage: an overview. J Appl Microbiol 115:637–643

    CAS  PubMed  Google Scholar 

  • Alshannaq A, Yu JH (2017) Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res 14:632

    Google Scholar 

  • Amalaradjou MA (2008) Detection of Penicillium, Aspergillus and Alternaria Species in fruits and vegetables. In: Barkai-Golan R, Paster N (eds) Mycotoxins in fruits and vegetables. Academic, New York, pp 225–247

    Google Scholar 

  • Amonkar SV, Nair KK (1965) Pathogenicity of Aspergillus flavus link to Musca domestica nebulo Fabricius. J Invertebr Pathol 7:513–514

    CAS  PubMed  Google Scholar 

  • Anjorin TS, Salako EA, Makun HA (2013) Mycotoxin and food safety in develo** countries, control of toxigenic fungi and mycotoxins with phytochemicals. In: Makun HA (ed) Mycotoxin and food safety in develo** countries. InTech, Rijeka, pp 181–202

    Google Scholar 

  • Aresta A, Cioffi N, Palmisano F, Zambonin CG (2003) Simultaneous determination of ochratoxin A and cyclopiazonic, mycophenolic, and tenuazonic acids in cornflakes by solid phase microextraction coupled to high-performance liquid chromatography. J Agric Food Chem 51:5232–5237

    CAS  PubMed  Google Scholar 

  • Aziz NH, Youssef YA, El-Fouly MZ, Moussa LA (1998) Contamination of some common medicinal plant samples and spices by fungi and their mycotoxins. Bot Bull Acad Sin 39:279–285

    Google Scholar 

  • Azziz-Baumgartner E, Lindblade K, Gieseker K et al (2005) Case-control study of an acute aflatoxicosis outbreak. Environ Health Perspect 113:1779–1783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barkai-Golan R (2008) Aspergillus mycotoxins. In: Barkai-Golan R, Paster N (eds) Mycotoxins in fruits and vegetables. Academic, New York, pp 115–151

    Google Scholar 

  • Battilani P, Pietri A (2002) Ochratoxin A in grapes and wine. Eur J Plant Pathol 108:639–643

    CAS  Google Scholar 

  • Bayman P, Baker JL (2006) Ochratoxins: a global perspective. Mycopathologia 162:215–223

    CAS  PubMed  Google Scholar 

  • Bayman P, Baker JL, Doster MA, Michailides TJ, Mahoney NE (2002) Ochratoxin production by the Aspergillus ochraceus group and Aspergillus alliaceous. Appl Environ Microbiol 68(5):2326–2329

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett JW, Klich M (2003) Mycotoxin. Clin Microbiol Rev 16(3):497–516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bettinger DA, Chinnici JP (1991) Utilization of response surface modeling to evaluate the interaction between aflatoxin B1 and caffeine on egg adult viability in Drosophila melanogaster. Va J Sci 42(3):311–320

    Google Scholar 

  • Boonzaaijer G, Osenbruggen WAV, Kleinnijenhuis AJ, Dongen WDV (2008) An exploratory investigation of several mycotoxins and their natural occurrence in flavor ingredients and spices, using a multi-mycotoxin LC-MS/MS method. World Mycotoxin J 1:167–174

    CAS  Google Scholar 

  • Broekhoven SV, Doan QHT, Huis AV, Loon JJAV (2014) Exposure of tenebrionid beetle larvae to mycotoxin-contaminated diets and methods to reduce toxin levels PROC. Neth Entomol Soc Meet 25:47–58

    Google Scholar 

  • Brown RL, Cotty PJ, Cleveland TE (1991) Reduction in aflatoxin content of maize by atoxigenic strains of Aspergillus flavus. J Food Proc 54(8):623–626

    CAS  Google Scholar 

  • Bryła M, Roszko M, Szymczyk K, Jędrzejczak R, Obiedziński MW, Sękul J (2013) Fumonisins in plant-origin food and fodder – a review. Food Addit Contam Pt A 30(9):1626–1640

    Google Scholar 

  • Bucheli P, Kanchanomai C, Meyer I, Pittet A (2000) Development of ochratoxin A during robusta (Coffea canephora) coffee cherry drying. J Agric Food Chem 48:1358–1362

    CAS  PubMed  Google Scholar 

  • Burdock GA, Flamm WG (2000) Safety assessment of the mycotoxin cyclopiazonic acid. Int J Toxicol 19:195–218

    CAS  Google Scholar 

  • Burks CS, Brandl DG (2004) Seasonal abundance of the navel orange worm, Amyelois transitella, in figs and the effect of peripheral aerosol dispensers on sexual communication. J Insect Sci 4:40–47

    PubMed  PubMed Central  Google Scholar 

  • Campbell BC, Molyneux RJ, Schatzki TF (2003) Current research on reducing pre- and post-harvest aflatoxin contamination of US almond, pistachio, and walnut. J Toxicol Toxin Rev 22:225–266

    CAS  Google Scholar 

  • Ciconova P, Laciakova A, Mate D (2010) Prevention of Ochratoxin A contamination of food and Ochratoxin A detoxification by microorganisms – a review. Czech J Food Sci 28(6):465–474

    CAS  Google Scholar 

  • Cole RJ (1984) Cyclopiazonic acid and related toxins. In: Betina V (ed) Mycotoxins: production, isolation, separation and purification. Elsevier, Amsterdam, pp 405–414

    Google Scholar 

  • Connell JH (2001) Leading edge of plant protection for almond. Hort Technol 12:619–622

    Google Scholar 

  • Dall’Asta C, Galaverna G, Mangia M, Sforza S, Dossena A, Marchelli R (2009) Free and bound fumonisins in gluten free food products. Mol Nutr Food Res 53:492–499

    PubMed  Google Scholar 

  • Detroy RW, Lillehoj EB, Ciegler A (1971) Aflatoxin and related compounds. In: Ciegler A, Kadis S, Ajl SJ (eds) Microbial toxins. Academic, New York, pp 3–178

    Google Scholar 

  • Diener UL, Cole RJ, Sanders TH, Payne GA, Lee LS, Klich MA (1987) Epidemiology of aflatoxin formation by Aspergillus flavus. Annu Rev Phytopathol 25:249–270

    CAS  Google Scholar 

  • Domer JW (2002) Recent advances in analytical methodology for cyclopiazonic acid. In: DeVries JW, Trucksess MW, Jackson LS (eds) Mycotoxin and food safety. Springer, New York, pp 107–116

    Google Scholar 

  • Domer JW, Cole RJ, Erlington DJ, Suksupath S, McDowell GH, Bryden WL (1994) Cyclopiazonic acid residues in milk and eggs. J Agric Food Chem 42:1516

    Google Scholar 

  • Dorner JW (1983) Production of cyclopiazonic acid by Aspergillus tamarii Kita. Appl Environ Microbiol 46:1435–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorner JW, Cole RJ, Diener UL (1984) The relationship of Aspergillus flavus and Aspergillus parasiticus with reference to production of aflatoxins and cyclopiazonic acid. Mycopathologia 87:13–15

    CAS  PubMed  Google Scholar 

  • Erdoğan A, Ghimire D, Gürses M, Çetin B, Baran A (2014) Patulin contamination in fruit juices and its control measures. Eur J Sci Technol 14:39–48

    Google Scholar 

  • Fente CA, Ordaz JJ, Vázquez BI, Franco CM, Cepeda A (2001) New additive for culture media for rapid identification of aflatoxin. Appl Environ Microbiol 67(10):4858–4862

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frisvad JC (2018) A critical review of producers of small lactone mycotoxins: patulin, penicillic acid and moniliformin. World Mycotoxin J 11(1):73–100

    CAS  Google Scholar 

  • Frisvad JC, Frank JM, Houbraken J, Kuijpers AFA, Samson RA (2004) New ochratoxin A producing species of Aspergillus section Circumdati. Stud Mycol 50:23–43

    Google Scholar 

  • Frisvad JC, Møller LLH, Larsen TO, Kumar R, Arnau J (2018) Safety of the fungal workhorses of industrial biotechnology: update on the mycotoxin and secondary metabolite potential of Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei. Appl Microbiol Biotechnol 102:9481–9515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallagher RT, Richard JL, Stahr HM, Cole RJ (1978) Cyclopiazonic acid production by aflatoxigenic and non aflatoxigenic strains of Aspergillus flavus. Mycopathologia 66:31–36

    CAS  PubMed  Google Scholar 

  • Garber RK, Cotty PJ (1997) Formation of sclerotia and aflatoxins in develo** cotton bolls infected by the S Strain of Aspergillus flavus and potential for biocontrol with an atoxigenic strain. Phytopathology 87(9):940–945

    CAS  PubMed  Google Scholar 

  • Garon D, Richard E, Sage L, Bouchart V, Pottier D, Lebailly P (2006) Mycoflora and multimycotoxin detection in corn silage: experimental study. J Agric Food Chem 54:3479–3484

    CAS  PubMed  Google Scholar 

  • Gazzotti T, Lugoboni B, Zironi E, Barbarossa A, Serraino A, Pagliuca G (2009) Determination of fumonisin B1 in bovine milk by LC-MS/MS. Food Control 20:1171–1174

    CAS  Google Scholar 

  • Gazzotti T, Zironi E, Lugoboni B, Barbarossa A, Piva A, Pagliuca G (2011) Analysis of fumonisins B1, B2 and their hydrolyzed metabolites in pig liver by LC–MS/MS. Food Chem 125:1379–1384

    CAS  Google Scholar 

  • Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP (1988) Fumonisins – novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol 54:1806–1811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gopal M, Gupta A, Nair KRC, Sathiamma B, Nair CPR (2000a) Studies on cross-infectivity with entomofungal isolates of Aspergillus flavus Link. against Stephanitis typica D. and Opisina arenosella W., two pests of coconut. Indian Coconut J 31:12–15

    Google Scholar 

  • Gopal M, Gupta A, Sathiamma B, Mohan C, Nair KRC, Soniya VP (2000b) A fungal pathogen of lace bug and leaf eating caterpillar, two insect pests of coconut palm. Coconut Res Dev 16:49–59

    Google Scholar 

  • Gourama H, Bullerman LB (1995) Aspergillus flavus and Aspergillus parasiticus: Aflatoxigenic fungi of concern in foods and feeds: a review. J Food Prot 58(12):1395–1404

    CAS  PubMed  Google Scholar 

  • Guo Z, Doll K, Dastjerdi R, Karlovsky P, Dehne HW, Altincicek B (2014) Effect of fungal colonization of wheat grains with Fusarium spp. on food choice, weight gain and mortality of meal beetle larvae (Tenebrio molitor). PLoS One 9(6):e100112

    PubMed  PubMed Central  Google Scholar 

  • Gupta A, Gopal M (2002) Aflatoxin production by Aspergillus flavus isolates pathogenic to coconut insect pests. World J Microbiol Biotechnol 18:325–331

    CAS  Google Scholar 

  • Hatabu T, Hagiwara M, Taguchi N, Kiyozawa M, Suzuki M, Kano Sand Sato K (2006) Plasmodium falciparum: the fungal metabolite gliotoxin inhibits proteasome proteolytic activity and exerts a plasmodicidal effect on P. falciparum. Exp Parasitol 112:179–183

    CAS  PubMed  Google Scholar 

  • Heathcote JG, Hibbert JR (1978) Aflatoxins: chem biol aspect. Elsevier, New York, pp 173–186

    Google Scholar 

  • Hedge UC, Chandra T, Shonmugasundaram ERB (1967) Toxicity of different diets contaminated with various fungi to rice moth larvae (Corcyra cephalonica St). Can J Comp Med Vet Sci 31:160–163

    Google Scholar 

  • Hesseltine CW, Vandegraft EE, Fennell DI, Smith ML, Shotwell OL (1972) Aspergilli as ochratoxin producers. Mycologia 64:539–550

    CAS  PubMed  Google Scholar 

  • Holzapfel CW (1968) The isolation and structure of cyclopiazonic acid, a toxic metabolite of Penicillium cyclopium Westling. Tetrahedron 24(5):2101–2119

    Google Scholar 

  • Howell CR, Stipanovic RD (1995) Mechanisms in the biocontrol of Rhizoctonia solani-Induced cotton seedling disease by Gliocladium virens: antibiosis. Phyopathology 85:469–472

    Google Scholar 

  • Ismaiel AA, Papenbrock J (2015) Review mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture 5:492–537

    CAS  Google Scholar 

  • Jackson L, Jablonski J (2004) Particular mycotoxins: fumonisins. In: Magan N, Olsen M (eds) Mycotoxins in food detection and control. Woodhead Publishing Ltd., Cambridge, pp 367–405

    Google Scholar 

  • Jiménez M, Mateo R, Querol A, Huerta T, Hernández (1991) Mycotoxins and mycotoxigenic moulds in nuts and sunflower seeds for human consumption. Mycopathologia 115:121–127

    PubMed  Google Scholar 

  • Kadakal C, Nas S (2002) Effect of activated charcoal on patulin levels in apple cider. Nahrung 46(1):31–33

    CAS  PubMed  Google Scholar 

  • Kamei K, Watanabe A (2005) Aspergillus mycotoxins and their effect on the host. Med Mycol 43:95–99

    Google Scholar 

  • Keller LAM, Keller KM, Monge MP, Pereyra CM, Alonso VA, Cavaglieri LR, Chiacchiera SM, Rosa CAR (2012) Gliotoxin contamination in and pre- and post-fermented corn, sorghum and wet brewer’s grains silage in Sao Paulo and Rio de Janeiro State, Brazil. J Appl Microbiol 112:865–873

    CAS  PubMed  Google Scholar 

  • Kocsubé S, Varga J, Szigeti G, Baranyi N, Suri K, Tóth B, Toldi E, Bartók T, Mesterházy A (2013) Aspergillus species as mycotoxin producer in agriculture products in central. J Nat Sci 124:13–25

    Google Scholar 

  • Kosalec I, Pepeljnjak S, Jandrlic M (2005) Influence of media and temperature on gliotoxin production in Aspergillus fumigatus strains. Arh Hig Rada Toksikol 56:269–273

    CAS  PubMed  Google Scholar 

  • Kupfahl C, Michalka A, Lass-Florl C, Fischer G, Haase G, Ruppert T, Geginat G, Hof H (2008) Gliotoxin production by clinical and environmental Aspergillus fumigatus strains. Int J Med Microbiol 298:319–327

    CAS  PubMed  Google Scholar 

  • Kurbatskaya ZA, Trotstanetskii AA (1987) Effect of temperature and humidity on the growth of Aspergillus fumigatus and formation of gliotoxin. Mikrobiol Zh 49:62–65

    Google Scholar 

  • Kwon-chung KJ, Sugui JA (2009) What do we know about the role of gliotoxin in the pathobiology of Aspergillus fumigatus? Med Mycol 47:97–103

    Google Scholar 

  • Lai M, Semeniuk G, Hesseltine CW (1970) Conditions for production of ochratoxin A by Aspergillus species in synthetic medium. Appl Microbiol 19:542–544

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laidou IA, Thanassoupoulos CC, Kyriakides ML (2001) Diffusion of patulin in the flesh of pears inoculated with four post-harvest pathogens. J Phytopathol 149:457–461

    Google Scholar 

  • Lalitha Rao B, Husain A (1985) (Paspalum scrobiculatum) causing ‘kodua poisoning’ in man and its production by associated fungi. Mycopathologia 89:177–180

    CAS  PubMed  Google Scholar 

  • Le Bars J (1990) Detection and occurrence of cyclopiazonic acid in cheeses. J Environ Pathol Toxicol Oncol 10(3):136–137

    PubMed  Google Scholar 

  • Lewis RE, Wiederhold NP, Lionakis MS, Prince RA, Kontoyiannis DP (2005) Frequency and species distribution of gliotoxin-producing Aspergillus isolates recovered from patients at a tertiary-care cancer center. J Clin Microbiol 43:6120–6122

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Zhang Q, Zhang D, Guan D, **aoxia, Liu DX, Fang S, Wang X, Zhang W (2011) Aflatoxin measurement and analysis, aflatoxins – detection, measurement and control. Irineo Torres-Pacheco, IntechOpen. https://doi.org/10.5772/23954

  • Liu R, Qian Y, Thanaboripat D, Thansukon P (2004) Biocontrol of Aspergillus flavus and aflatoxin production. Kmit Sci J 4:1685–2044

    Google Scholar 

  • Liu Q, Liu G, Liu H (2008) Investigation into status of contamination of strong carcinogen – fumonisin in peanut, corn and their products and their rapid detection. Zhongguo Redai Yixue 8:1906–1908

    CAS  Google Scholar 

  • Logrieco A, Ferracane R, Visconti A, Ritieni A (2010) Natural occurrence of fumonisin B2 in red wine from Italy. Food Addit Contam A 27:1136–1141

    CAS  Google Scholar 

  • Losada L, Ajayi O, Frisvad JC, Yu J, Nierman WC (2009) Effect of competition on the production and activity of secondary metabolites in Aspergillus species. Med Mycol 47:88–96

    Google Scholar 

  • Luk KC, Kobbe B, Townsend JM (1977) Production of cyclopiazonic acid by Aspergillus flavus Link. Appl Environ Microbiol 32:211–212

    Google Scholar 

  • Majeed M, Asghar A, Randhawa MA, Shehzad A, Sohaib M, Abdullah (2013) Ochratoxin A in cereal products, potential hazards and prevention strategies: a review. Pak J Food Sci 23(1):52–56

    Google Scholar 

  • Malir F, Ostry V, Leszkowicz AP, Malir J, Toman J (2016) Ochratoxin A: 50 years of research. Toxins 8(191):1–49

    Google Scholar 

  • Marasas WFO (2001) Discovery and occurrence of the fumonisins: a historical perspective. Environ Health Perspect 109(2):239–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martins ML, Martins HM, Bernardo F (2001) Fumonisins B1 and B2 in black tea and medicinal plants. J Food Prot 64:1268–1270

    CAS  PubMed  Google Scholar 

  • Masoero F, Gallo A, Moschini M, Piva G, Diaz D (2007) Carryover of aflatoxin from feed to milk in dairy cows with low or high somatic cell counts. Animal 1:1344–1350

    CAS  PubMed  Google Scholar 

  • Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH, Rothman KJ, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas–Mexico border. Environ Health Perspect 114:237–241

    PubMed  Google Scholar 

  • Moake MM, Padilla-Zakour OI, Worobo RW (2005) Comprehensive review of patulin control methods in foods. Compr Rev Food Sci Food Saf 1:8–21

    Google Scholar 

  • Motta SD, Soares LMV (2001) Survey of Brazilian tomato products for alternariol monomethyl ether, tenuazonic acid and cyclopiazonic acid. Food Addit Contam 18:630–634

    CAS  PubMed  Google Scholar 

  • Munkvold GP, Desjardins AE (1997) Fumonisins in maize: can we reduce their occurrence? Plant Dis 81:556–564

    CAS  PubMed  Google Scholar 

  • Murphy PA, Hendrich S, Landgren C, Bryant CM (2006) Food mycotoxins: an update. J Food Sci 71:51–65

    Google Scholar 

  • Nakajima M, Tsubouchi H, Miyabe M, Ueno Y (1997) Survey of aflatoxin B1 and ochratoxin A in commercial green coffee beans by high-performance liquid chromatography linked with immunoaffinity chromatography. Food Agric Immunol 9:77–83

    CAS  Google Scholar 

  • Niu G, Siegel J, Schuler MA, Berenbaum MR (2009) Comparative toxicity of mycotoxins to navel orange worm (Amyelois transitella) and corn earworm (Helicoverpa zea). J Chem Ecol 35:951–957

    Google Scholar 

  • Njobeh PB, Dutton MF, Koch SH, Chuturgoon AA, Stoev SD, Mosonik JS (2010) Simultaneous occurrence of mycotoxins in human food commodities from Cameroon. Mycotoxin Res 26:47–57

    CAS  PubMed  Google Scholar 

  • Noonim P, Mahakarnchanakul W, Nielsen KF, Frisvad JC, Samson RA (2009) Fumonisin B2 production by Aspergillus niger in Thai coffee beans. Food Addit Contam A 26:94–100

    CAS  Google Scholar 

  • Norred WP, Cole RJ, Dorner JW, Lansden JA (1987) Liquid chromatographic determination of cyclopiazonic acid in poultry meat. JAOAC 70:121–123

    CAS  Google Scholar 

  • Norred WP, Porter JK, Domer JW, Cole RJ (1988) Occurrence of the mycotoxin cyc1opiazonic acid in meat after oral administration to chickens. J Agric Food Chern 36:113

    CAS  Google Scholar 

  • Nouri MA, Ali AJA, Hashim AJ, Dheeb BI, Zaal AM (2015) Optimal conditions for gliotoxin production from Aspergillus fumigatus using solid state fermentation. Int J Sci Basic Appl Res 24(5):331–346

    Google Scholar 

  • Obioha IW (1979) Distribution, production, analysis and effects of aflatoxin in animal tissues and effects of scirpene toxins on chicken embryos. Retrospective Theses and Dissertations

    Google Scholar 

  • Omurtag GZ, Yazicioglu D (2004) Determination of fumonisins B1 and B2 in herbal tea and medicinal plants in Turkey by high performance liquid chromatography. J Food Prot 67:1782–1786

    CAS  PubMed  Google Scholar 

  • Ostry V, Malir F, Toman J, Grosse Y (2017) Mycotoxins as human carcinogens-the IARC Monographs classification. Mycotoxin Res 33:65–73

    CAS  PubMed  Google Scholar 

  • Pagliuca G, Zironi E, Ceccolini A, Matera R, Serrazanetti GP, Pivac A (2005) Simple method for the simultaneous isolation and determination of fumonisin B1 and its metabolite aminopentol-1 in swine liver by liquid chromatography– fluorescence detection. J Chromatogr B 819:97–103

    CAS  Google Scholar 

  • Paugam A, Creuzet C, Dupouy-Camet J, Roisín MP (2002) In vitro effects of gliotoxin, a natural proteasome inhibitor, on the infectivity and proteolytic activity of Toxoplasma gondii. Parisitol Res 88(8):785–787

    Google Scholar 

  • Pena GA, Pereyra CM, Armando MR, Chiacchiera SM, Magnoli CE, Orlando JL, Dalcero AM, Rosa CAR, Cavaglieri LR (2010) Aspergillus fumigatus toxicity and gliotoxin levels in feedstuff for domestic animals and pets in Argentina. Lett Appl Microbiol 50:77–81

    CAS  PubMed  Google Scholar 

  • Pereyra CM, Alonso VA, Rosa CAR, Chiacchiera SM, Dalcero AM, Cavaglieri LR (2008) Gliotoxin natural incidence and toxigenicity of Aspergillus fumigatus isolated from corn silage and ready dairy cattle feed. World Mycotoxin J 1(4):457–462

    CAS  Google Scholar 

  • Perrone G, Gallo A (2017) Aspergillus species and their associated mycotoxins. In: Moretti A, Susca A (eds) Mycotoxigenic fungi methods and protocols. Humana Press, New York, pp 33–49

    Google Scholar 

  • Pitt JI (2000) Toxigenic fungi: which are important? Med Mycol 38(1):7–22

    Google Scholar 

  • Ponnamma KN, Gopal M, Sharmila S (2000) Record of Aspergillus flavus (Link) on the plant hopper, Proutista moesta Westwood (Hemiptera: Derbidae). J Plant Crop 28:231–232

    Google Scholar 

  • Puel O, Galtier P, Oswald IP (2010) Biosynthesis and toxicological effects of patulin. Toxins 2:613–631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019a) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144

    Google Scholar 

  • Rana KL, Kour D, Yadav AN (2019b) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162

    Google Scholar 

  • Rastegari AA, Yadav AN, Awasthi AA, Yadav N (2020a) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: diversity and functional perspectives. Elsevier, Cambridge

    Google Scholar 

  • Rastegari AA, Yadav AN, Awasthi AA, Yadav N (2020b) Trends of microbial biotechnology for sustainable agriculture and biomedicine systems: perspectives for human health. Elsevier, Cambridge

    Google Scholar 

  • Razzaghi-Abyaneh M, Allameh A, Tiraihi T, Shams-Ghahfarokhi M, Ghorbanian M (2005) Morphological alterations in toxigenic Aspergillus parasiticus exposed to neem (Azadirachta indica) leaf and seed aqueous extracts. Mycopathologia 59(4):565–570

    Google Scholar 

  • Reiss J (1975) Insecticidal and larvicidal activates of the mycotoxins aflatoxin B1, rubratoxin B, patulin and diacetoxyscir-penol toward Drosophila melanogaster. Chem Biol Interact 10:339–342

    CAS  PubMed  Google Scholar 

  • Richard JL, Bennett GA, Ross PF, Nelson PE (1993) Analysis of naturally occurring mycotoxins in feedstuffs and food. J Anim Sci 71:2563–2574

    CAS  PubMed  Google Scholar 

  • Richard E, Heutte N, Bouchart V, Garon D (2009) Evaluation of fungal contamination and mycotoxin production in maize silage. Anim Feed Sci Technol 148:309–320

    CAS  Google Scholar 

  • Rizzi L, Simioli M, Roncada P, Zaghini A (2003) Aflatoxin B1 and clinoptilolite in feed for laying hens: effect on egg quality, mycotoxin residues in livers and hepatic mixed function oxidase activities. J Food Prot 66:860–865

    CAS  PubMed  Google Scholar 

  • Romero González R, Martínez Vidal JL, Aguilera Luiz MM, Garrido Frenich A (2009) Application of conventional solid-phase extraction for multimycotoxin analysis in beers by ultrahigh-performance liquid chromatography–tandem mass spectrometry. J Agric Food Chem 57:9385–9392

    Google Scholar 

  • Ross PF, Rice LG, Casper R, Crenshaw JD, Richard JL (1991) Novel occurrence of cyclopiazonic acid in sunflower seeds. Vet Hum Toxieo 33:284

    CAS  Google Scholar 

  • Saleemullah AI, Khalil IA, Shah H (2006) Aflatoxin contents of stored and artificially inoculated cereals and nuts. Food Chem 98:699–703

    CAS  Google Scholar 

  • Samson RA, Houbraken JAMP, Kuijpers AFA, Frank JM, Frisvad JC (2004) New ochratoxin A or sclerotium producing species in Aspergillus section Nigri. Stud Mycol 50:45–61

    Google Scholar 

  • Sangare-Tigori B, Moukha S, Kouadio HJ, Betbeder AM, Dano DS, Creppy EE (2006) Co-occurrence of aflatoxin B1, fumonisin B1, ochratoxin A and zearalenone in cereals and peanuts from CotedIvoire. Food Addit Contam 23:1000–1007

    CAS  PubMed  Google Scholar 

  • Santos L, Marın S, Sanchis V, Ramos AJ (2009) Screening of mycotoxin multicontamination in medicinal and aromatic herbs sampled in Spain. J Sci Food Agric 89:1802–1807

    CAS  Google Scholar 

  • Schrögel P, Wätjen W (2019) Insects for food and feed-safety aspects related to mycotoxins and metals. Foods 8:288

    PubMed Central  Google Scholar 

  • Scott PM (2012) Recent research on fumonisins: a review. Food Addit Contam Pt A 29:2,242–2,248

    Google Scholar 

  • Scudamore KA, Livesey CT (1998) Occurrence and significance of mycotoxins in forage crops and silage: a review. J Sci Food Agric 77:1–17

    CAS  Google Scholar 

  • Seefelder W, Gossmann M, Humpf HU (2002) Analysis of fumonisin B1 in Fusarium proliferatum-infected asparagus spears and garlic bulbs from Germany by liquid chromatography-electrospray ionization mass spectrometry. J Agric Food Chem 50:2778–2281

    CAS  PubMed  Google Scholar 

  • Senyuva HZ, Gilbert J (2008) Identification of fumonisin B2, HT-2 toxin, patulin, and zearalenone in dried figs by liquid chromatography-time-of-flight mass spectrometry and liquid chromatography-mass spectrometry. J Food Prot 71:1500–1504

    CAS  PubMed  Google Scholar 

  • Sewram V, Shephard GS, Merwe LVD, Jacobs TV (2006) Mycotoxin contamination of dietary and medicinal wild plants in the Eastern Cape Province of South Africa. J Agric Food Chem 54:5688–5693

    CAS  PubMed  Google Scholar 

  • Speijers GJA (2004) Particular mycotoxins: patulin. In: Magan N, Olsen M (eds) Mycotoxins in food detection and control. CRC Press, Boca Raton, pp 339–352

    Google Scholar 

  • Stoev SD (2013) Food safety and increasing hazard of mycotoxin occurrence in foods and feeds. Crit Rev Food Sci 53(9):887–901

    CAS  Google Scholar 

  • Stott WT, Bullerman LB (1975) Patulin: a mycotoxin of potential concern in foods. J Milk Food Technol 38(11):695–705

    CAS  Google Scholar 

  • Strosnider H, Azziz-Baumgartner E, Banziger M, Bhat RV, Breiman R et al (2006) Public health strategies for reducing aflatoxin exposure in develo** countries: a workgroup report. Environ Health Perspect 12:1898–1903

    Google Scholar 

  • Sugui JA, Pardo J, Chang YC, Zarember KA, Nardone G, Galvez EM, Mullbacher A, Gallin JI, Simon MM, Kwon-Chung KJ (2007) Gliotoxin is a virulence factor of Aspergillus fumigatus: gliP deletion attenuates virulence in mice immunosuppressed with hydrocortisone. Eukaryot Cell 6(9):1562–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teren J, Varga J, Hamari Z, Rinyu E, Kevei F (1996) Immunochemical detection of ochratoxin A in black Aspergillus strains. Mycopathologia 134:171–176

    CAS  PubMed  Google Scholar 

  • Trucksess MW, Mislivec PB, Young K et al (1987) Cyclopiazonic acid production by cultures of Aspergillus and Penicillium species isolated from dried beans, cornmeal macaroni and pecans. J Assoc Off Annal Chem 70:123–126

    CAS  Google Scholar 

  • Tsubouchi H, Terada H, Yamamoto K, Hisada K, Sakabe Y (1995) Caffeine degradation and increased ochratoxin production by toxigenic strains of Aspergillus ochraceus isolated from green coffee beans. Mycopathologia 90:181–186

    Google Scholar 

  • Urano T, Trucksess MW, Beaver RW et al (1992) Co-occurrence of cyclopiazonic acid and aflatoxins in corn and peanuts. J AOAC Int 75:838–841

    CAS  Google Scholar 

  • Varga J, Due M, Frisvad JC, Samson RA (2007) Taxonomic revision of Aspergillus section Clavati based on molecular, morphological and physiological data. Stud Mycol 59:89–106

    CAS  PubMed  PubMed Central  Google Scholar 

  • Varga J, Baranyi N, Chandrasekaran M, Vágvölgyi C, Kocsubé S (2015) Mycotoxin producers in the Aspergillus genus: an update. Acta Biol Szeged 9(2):151–167

    Google Scholar 

  • Voss KA, Norred WP, Hinton DM et al (1990) Subchronic oral toxicity of cyclopiazonic acid (CPA) in Sprague-Dawley rats. Mycopathologia 110:11–18

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang L, Liu F, Wang Q, Selvaraj JN, **ng F, Zhao Y, Liu Y (2016) Ochratoxin A producing fungi, biosynthetic pathway and regulatory mechanisms. Toxins 8(3):83

    PubMed Central  Google Scholar 

  • Wicklow DT, Cole RJ (1982) Tremorgenic indole metabolites and aflatoxins in sclerotia of Aspergillus flavus: an evolutionary perspective. Can J Bot 60:525–528

    CAS  Google Scholar 

  • Wild C, Gong Y (2010) Mycotoxins and human disease: a largely ignored global health issue. Carcinogenesis 31:71–82

    CAS  PubMed  Google Scholar 

  • Wilson DM, Mutabanhema W, Jurjevic Z (2002) Biology and ecology of mycotoxigenic Aspergillus species as related to economic and health concerns. In: DeVries JW, Trucksess MW, Jackson LS (eds) Mycotoxin and food safety. Springer, New York, pp 3–17

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan V, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:45–57

    CAS  Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019a) Recent advancement in white biotechnology through fungi. volume 2: perspective for value-added products and environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. volume 3: perspective for sustainable environments. Springer, Cham

    Google Scholar 

  • Yadav AN, Mishra S, Kour D, Yadav N, Kumar A (2020a) Agriculturally important fungi for sustainable agriculture, volume 1: perspective for diversity and crop productivity. Springer, Cham

    Google Scholar 

  • Yadav AN, Rastegari AA, Yadav N (2020b) Microbiomes of extreme environments: biodiversity and biotechnological applications. CRC Press, Boca Raton

    Google Scholar 

  • Yadav AN, Singh J, Rastegari AA, Yadav N (2020c) Plant microbiomes for sustainable agriculture. Springer, Cham

    Google Scholar 

  • Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15(2):129–144

    CAS  Google Scholar 

  • Zeng RS, Niu G, Wen Z, Schuler MA, Berenbaum MR (2006) Toxicity of aflatoxin B1 to Helicoverpa zea and bioactivation by cytochrome P450 monooxygenases. J Chem Ecol 32:1459–1471

    CAS  PubMed  Google Scholar 

  • Zinedine A (2010) Ochratoxin A in Moroccan foods: occurrence and legislation. Toxins 2:1121–1133

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abo Nouh, F.A., Gezaf, S.A., Abdel-Azeem, A.M. (2020). Aspergillus Mycotoxins: Potential as Biocontrol Agents. In: Yadav, A., Mishra, S., Kour, D., Yadav, N., Kumar, A. (eds) Agriculturally Important Fungi for Sustainable Agriculture. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-030-48474-3_7

Download citation

Publish with us

Policies and ethics

Navigation