The Mechanical Properties of Bacteria and Why they Matter

  • Chapter
  • First Online:
Physical Microbiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1267))

  • 1264 Accesses

Abstract

I review recent techniques to measure the mechanical properties of bacterial cells and their subcellular components, and then discuss what these techniques have revealed about the constitutive mechanical properties of whole bacterial cells and subcellular material, as well as the molecular basis for these properties.

“It behooves us always to remember that in physics it has taken great scientists to discover simple things. They are very great names indeed which we couple with the explanation of the path of a stone, the droop of a chain, the tints of a bubble, the shadows in a cup. It is but the slightest adumbration of a dynamical morphology [of biological systems] that we can hope to have until the physicist and the mathematician shall have made these problems of ours their own.”

– D’arcy Thompson, On Growth and Form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Amir A, Babaeipour F, McIntosh DB, Nelson DR, Jun S (2014) Bending forces plastically deform growing bacterial cell walls. Proc Natl Acad Sci 111(16):5778–5783

    CAS  PubMed  Google Scholar 

  • Auer GK, Lee TK, Rajendram M, Cesar S, Miguel A, Huang KC, Weibel DB (2016) Mechanical genomics identifies diverse modulators of bacterial cell stiffness. Cell Syst 2(6):402–411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benham CJ, Mielke SP (2005) DNA mechanics. Annu Rev Biomed Eng 7:21–53

    CAS  PubMed  Google Scholar 

  • Berry J, Rajaure M, Pang T, Young R (2012) The spanin complex is essential for lambda lysis. J Bacteriol 194(20):5667–5674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Billaudeau C, Yao Z, Cornilleau C, Carballido-López R, Chastanet A (2019) MreB forms subdiffraction nanofilaments during active growth in Bacillus subtilis. MBio 10(1):e01879–e01818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cabeen MT, Charbon G, Vollmer W, Born P, Ausmees N, Weibel DB, Jacobs-Wagner C (2009) Bacterial cell curvature through mechanical control of cell growth. EMBO J 28(9):1208–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y-Y, Wu C-C, Hsu J-L, Peng H-L, Chang H-Y, Yew T-R (2009) Surface rigidity change of Escherichia coli after filamentous bacteriophage infection. Langmuir 25(8):4607–4614

    CAS  PubMed  Google Scholar 

  • Cho H, Uehara T, Bernhardt TG (2014) Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 159(6):1300–1311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Deng Y, Sun M, Shaevitz JW (2011) Direct measurement of cell wall stress stiffening and turgor pressure in live bacterial cells. Phys Rev Lett 107(15):158101

    PubMed  Google Scholar 

  • Domínguez-Escobar J, Chastanet A, Crevenna AH, Fromion V, Wedlich-Söldner R, Carballido-López R (2011) Processive movement of MreB-associated cell wall biosynthetic complexes in bacteria. Science 333(6039):225–228

    PubMed  Google Scholar 

  • Eaton P, Fernandes JC, Pereira E, Pintado ME, Malcata FX (2008) Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108(10):1128–1134

    CAS  PubMed  Google Scholar 

  • Errington J, Mickiewicz K, Kawai Y, Wu LJ (2016) L-form bacteria, chronic diseases and the origins of life. Philos Trans R Soc B Biol Sci 371(1707):20150494

    Google Scholar 

  • Francius G, Domenech O, Mingeot-Leclercq MP, Dufrêne YF (2008) Direct observation of Staphylococcus aureus cell wall digestion by lysostaphin. J Bacteriol 190(24):7904–7909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gaboriaud F, Parcha BS, Gee ML, Holden JA, Strugnell RA (2008) Spatially resolved force spectroscopy of bacterial surfaces using force-volume imaging. Colloids Surf B: Biointerfaces 62(2):206–213

    CAS  PubMed  Google Scholar 

  • Galilei G (1914) Dialogues concerning two new sciences. Dover, New York

    Google Scholar 

  • Gan L, Chen S, Jensen GJ (2008) Molecular organization of gram-negative peptidoglycan. Proc Natl Acad Sci 105(48):18953–18957

    CAS  PubMed  Google Scholar 

  • Garner EC, Bernard R, Wang W, Zhuang X, Rudner DZ, Mitchison T (2011) Coupled, circumferential motions of the cell wall synthesis machinery and MreB filaments in B. subtilis. Science 333(6039):222–225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gitai Z, Dye NA, Reisenauer A, Wachi M, Shapiro L (2005) MreB actin-mediated segregation of a specific region of a bacterial chromosome. Cell 120(3):329–341

    CAS  PubMed  Google Scholar 

  • Harvey CW, Morcos F, Sweet CR, Kaiser D, Chatterjee S, Liu X, Chen DZ, Alber M (2011) Study of elastic collisions of Myxococcus xanthus in swarms. Phys Biol 8(2):026016

    PubMed  Google Scholar 

  • Herrmann M, Schneck E, Gutsmann T, Brandenburg K, Tanaka M (2015) Bacterial lipopolysaccharides form physically cross-linked, two-dimensional gels in the presence of divalent cations. Soft Matter 11(30):6037–6044

    CAS  PubMed  Google Scholar 

  • Hoffmann T, Boiangiu C, Moses S, Bremer E (2008) Responses of Bacillus subtilis to hypotonic challenges: physiological contributions of mechanosensitive channels to cellular survival. Appl Environ Microbiol 74(8):2454–2460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janmey PA (1991) Mechanical properties of cytoskeletal polymers. Curr Opin Cell Biol 3(1):4–11

    CAS  PubMed  Google Scholar 

  • Lederberg J, Clair JS (1958) Protoplasts and L-type growth of Escherichia coli. J Bacteriol 75(2):143

    CAS  PubMed  PubMed Central  Google Scholar 

  • Love AEH (2013) A treatise on the mathematical theory of elasticity. Cambridge university press, Cambridge

    Google Scholar 

  • Madigan MT, Martinko JM, Parker J (1997) Brock biology of microorganisms, vol 11. Prentice hall, Upper Saddle River

    Google Scholar 

  • Männik J, Driessen R, Galajda P, Keymer JE, Dekker C (2009) Bacterial growth and motility in sub-micron constrictions. Proc Natl Acad Sci 106(35):14861–14866

    PubMed  Google Scholar 

  • Margolin W (2009) Sculpting the bacterial cell. Curr Biol 19(17):R812–R822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martinac B (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117(12):2449–2460

    CAS  PubMed  Google Scholar 

  • Metzler R, Jeon JH, Cherstvy AG, Barkai E (2014) Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys Chem Chem Phys 16(44):24128–24164

    CAS  PubMed  Google Scholar 

  • Milo R, Phillips R (2015) Cell biology by the numbers. Garland Science, New York

    Google Scholar 

  • Mizuno T (1979) A novel peptidoglycan-associated lipoprotein found in the cell envelope of Pseudomonas aeruginosa and Escherichia coli. J Biochem 86(4):991–1000

    CAS  PubMed  Google Scholar 

  • Osawa M, Anderson DE, Erickson HP (2008) Reconstitution of contractile FtsZ rings in liposomes. Science 320(5877):792–794

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pelletier J, Halvorsen K, Ha B-Y, Paparcone R, Sandler SJ, Woldringh CL, Wong WP, Jun S (2012) Physical manipulation of the Escherichia coli chromosome reveals its soft nature. Proc Natl Acad Sci 109(40):E2649–E2656

    CAS  PubMed  Google Scholar 

  • Perry CC, Weatherly M, Beale T, Randriamahefa A (2009) Atomic force microscopy study of the antimicrobial activity of aqueous garlic versus ampicillin against Escheri- chia coli and Staphylococcus aureus. J Sci Food Agric 89:958–964

    CAS  Google Scholar 

  • Parry BR, Surovtsev IV, Cabeen MT, O’Hern CS, Dufresne ER, Jacobs-Wagner C (2014) The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell 156(1–2):183–194

    CAS  PubMed  Google Scholar 

  • Persat A, Nadell CD, Kim MK, Ingremeau F, Siryaporn A, Drescher K, Wingreen NS, Bassler BL, Gitai Z, Stone HA (2015) The mechanical world of bacteria. Cell 161(5):988–997

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rassam P, Copeland NA, Birkholz O, Tóth C, Chavent M, Duncan AL, Cross SJ et al (2015) Supramolecular assemblies underpin turnover of outer membrane proteins in bacteria. Nature 523(7560):333

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas E, Theriot JA, Huang KC (2014) Response of Escherichia coli growth rate to osmotic shock. Proc Natl Acad Sci 111(21):7807–7812

    CAS  PubMed  Google Scholar 

  • Rojas ER, Huang KC, Theriot JA (2017) Homeostatic cell growth is accomplished mechanically through membrane tension inhibition of cell-wall synthesis. Cell Syst 5(6):578–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rojas ER, Billings G, Odermatt PD, Auer GK, Zhu L, Miguel A, Chang F, Weibel DB, Theriot JA, Huang KC (2018) The outer membrane is an essential load-bearing element in gram-negative bacteria. Nature 559(7715):617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saxton MJ (1994) Anomalous diffusion due to obstacles: a Monte Carlo study. Biophys J 66(2):394–401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Bratton BP, Gitai Z, Huang KC (2018) How to build a bacterial cell: MreB as the foreman of E. coli construction. Cell 172(6):1294–1305

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shih Y-L, Rothfield L (2006) The bacterial cytoskeleton. Microbiol Mol Biol Rev 70(3):729–754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonntag I, Schwarz H, Hirota Y, Henning U (1978) Cell envelope and shape of Escherichia coli: multiple mutants missing the outer membrane lipoprotein and other major outer membrane proteins. J Bacteriol 136(1):280–285

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Weinlandt WD, Patel H, Wu M, Hernandez CJ (2014a) A microfluidic platform for profiling biomechanical properties of bacteria. Lab Chip 14(14):2491–2498

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Y, Sun T-L, Huang HW (2014b) Physical properties of Escherichia coli spheroplast membranes. Biophys J 107(9):2082–2090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi S, DiLuzio WR, Weibel DB, Whitesides GM (2005) Controlling the shape of filamentous cells of Escherichia coli. Nano Lett 5(9):1819–1823

    CAS  PubMed  PubMed Central  Google Scholar 

  • Teeffelen V, Sven SW, Furchtgott L, Huang KC, Wingreen NS, Shaevitz JW, Gitai Z (2011) The bacterial actin MreB rotates, and rotation depends on cell-wall assembly. Proc Natl Acad Sci 108(38):15822–15827

    PubMed  Google Scholar 

  • Thompson D’AW (1992) Chapter: introductory. In: Bonner JT (ed) On growth and form. Cambridge University Press, Cambridge, pp 1–14. https://doi.org/10.1017/CBO9781107325852.005

    Chapter  Google Scholar 

  • Todar K (2006) Todar’s online textbook of bacteriology. University of Wisconsin-Madison Department of Bacteriology, Madison

    Google Scholar 

  • Tuson HH, Auer GK, Renner LD, Hasebe M, Tropini C, Salick M, Crone WC, Gopinathan A, Huang KC, Weibel DB (2012) Measuring the stiffness of bacterial cells from growth rates in hydrogels of tunable elasticity. Mol Microbiol 84(5):874–891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vadillo-Rodriguez V, Dutcher JR (2009) Dynamic viscoelastic behavior of individual gram-negative bacterial cells. Soft Matter 5(24):5012–5019

    CAS  Google Scholar 

  • Verwer RW, Nanninga N, Keck W, Schwarz U (1978) Arrangement of glycan chains in the sacculus of Escherichia coli. J Bacteriol 136(2):723–729

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Arellano-Santoyo H, Combs PA, Shaevitz JW (2010) Actin-like cytoskeleton filaments contribute to cell mechanics in bacteria. Proc Natl Acad Sci 107(20):9182–9185

    CAS  PubMed  Google Scholar 

  • Wang S, Furchtgott L, Huang KC, Shaevitz JW (2012) Helical insertion of peptidoglycan produces chiral ordering of the bacterial cell wall. Proc Natl Acad Sci 109(10):E595–E604

    PubMed  Google Scholar 

  • Weber SC, Spakowitz AJ, Theriot JA (2010) Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys Rev Lett 104(23):238102

    PubMed  PubMed Central  Google Scholar 

  • Weber SC, Spakowitz AJ, Theriot JA (2012) Nonthermal ATP-dependent fluctuations contribute to the in vivo motion of chromosomal loci. Proc Natl Acad Sci 109(19):7338–7343

    CAS  PubMed  Google Scholar 

  • Whatmore AM, Reed RH (1990) Determination of turgor pressure in Bacillus subtilis: a possible role for K+ in turgor regulation. Microbiology 136(12):2521–2526

    CAS  Google Scholar 

  • Yao X, Jericho M, Pink D, Beveridge T (1999) Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J Bacteriol 181(22):6865–6875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yao Z, Kahne D, Kishony R (2012) Distinct single-cell morphological dynamics under beta-lactam antibiotics. Mol Cell 48(5):705–712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young KD (2006) The selective value of bacterial shape. Microbiol Mol Biol Rev 70(3):660–703

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ducret A, Shaevitz J, Mignot T (2012) From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus. FEMS Microbiol Rev 36(1):149–164

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique R. Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rojas, E.R. (2020). The Mechanical Properties of Bacteria and Why they Matter. In: Duménil, G., van Teeffelen, S. (eds) Physical Microbiology. Advances in Experimental Medicine and Biology, vol 1267. Springer, Cham. https://doi.org/10.1007/978-3-030-46886-6_1

Download citation

Publish with us

Policies and ethics

Navigation