The Hows and Whys of Heavy Metal-Mediated Phytotoxicity: An Insight

  • Chapter
  • First Online:
Cellular and Molecular Phytotoxicity of Heavy Metals

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

For the last few years, heavy metal toxicity in plants has remained as a global concern in respect to environment, agriculture, and ultimately human health. Several anthropogenic activities including modern agriculture process and industrialization cause a sharp increase in the concentration of various heavy metals in air, soil, and water. Constant increase in heavy metal concentration in the environment causes their entry and bioaccumulation in the food chain through plants. In plants, heavy metals directly or indirectly affect a broad range of physiological and metabolic processes including inhibition of photosynthesis and respiration and decrease in essential plant pigments which ultimately affect crop productivity. Inside the root cells, heavy metal ions may accumulate within various subcellular compartments of root cells, mainly vacuole and Golgi apparatus, or may be transported to different parts of the shoot through xylem cylinder by forming complex with different metal chelators. A common consequence of heavy metal toxicity in the plant cell is the elevated accumulation of reactive oxygen species (ROS) which can hamper the structure and function of crucial biomolecules including lipid, protein, and enzymes. The interaction of heavy metals with nuclear proteins, chromatin, and microtubules results in profound mitotic abnormality and genotoxicity. Plants have developed a sophisticated and coordinated system that modulates the uptake, accumulation, relocation, and detoxification of metals by highly effective homeostatic mechanisms. Various components of this network have been identified till date, including different transporters and chelators. Transporters belonging to different classes are involved in metal uptake and vacuolar transport and chelators involved in trafficking and detoxification via buffering the cytosolic metal concentrations. This chapter considers the recent progress in understanding the mechanism of heavy metal uptake and relocation and also provides insights regarding the mechanisms governing metal phytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdel-Basset R, Issa AA, Adam MS (1995) Chlorophyllase activity: effects of heavy metals and calcium. Photosynthetica 31:421–425

    CAS  Google Scholar 

  • Ahmad MS, Ashraf M (2011) Essential roles and hazardous effects of nickel in plants. Rev Environ Contam Toxicol 214:125–167

    CAS  PubMed  Google Scholar 

  • Ahsan N, Lee SH, Lee DG, Lee H, Lee SW, Bahk JD (2007) Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. C R Biol 330:735–746

    Article  CAS  PubMed  Google Scholar 

  • Alaoui-Sosse B, Genet P, Vinit-Dunand F, Toussaint ML, Epron D, Badot PM (2004) Effect of copper on growth in cucumber plants (Cucumis sativus) and its relationships with carbohydrate accumulation and changes in ion contents. Plant Sci 166:1213–1218

    Article  CAS  Google Scholar 

  • Ali H, Khan E (2017) What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’—proposal of a comprehensive definition. Toxicol Environ Chem 100:6–19

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  CAS  PubMed  Google Scholar 

  • Arazi T, Kaplan B, Fromm H (2000) A high-affinity calmodulin-binding site in a tobacco plasma membrane channel protein coincides with a characteristic element of cyclic nucleotide-binding domains. Plant Mol Biol 42:591–601

    Article  CAS  PubMed  Google Scholar 

  • Baccouch S, Chaoui A, El Ferjani E (2001) Nickel toxicity induces oxidative damage in Zea mays roots. J Plant Nutr 24:1085–1097

    Article  CAS  Google Scholar 

  • Bertrand M, Guary JC (2002) How plants adopt their physiology to an excess of metals. In: Handbook of plant and crop physiology, 2nd edn. Marcel Dekker Inc, New York, pp 751–761

    Google Scholar 

  • Bhalerao SA, Prabhu DV (2013) Aluminium toxicity in plants—a review. J Appl Chem 2:447–474

    CAS  Google Scholar 

  • Bian M, Zhou M, Sun D, Li C (2013) Molecular approaches unravel the mechanism of acid soil tolerance in plants. Th Crop J 1:91–104

    Article  Google Scholar 

  • Brune A, Urbach W, Dietz KJ (1994) Compartmentation and transport of zinc in barley primary leaves as basic mechanisms involved in zinc tolerance. Plant Cell Environ 17(2):153–162

    Article  CAS  Google Scholar 

  • Burzynski M, Grabowski A (1984) Influence of lead on NO3− uptake and reduction in cucumber seedlings. Acta Soc Bot Pol 53:77–86

    Article  CAS  Google Scholar 

  • Carrier PAB, Havaux M (2003) Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on cadmium-contaminated soil. Planta 216:939–950

    Google Scholar 

  • Chakrabarty D, Trivedi PK, Misra P, Tiwari M, Shri M, Shukla D (2009) Comparative transcriptome analysis of arsenatead arsenite stresses in rice seedlings. Chemosphere 74:688–702. https://doi.org/10.1016/j.chemosphere.2008.09.082

    Article  CAS  PubMed  Google Scholar 

  • Chen G, Liu Y, Wang R, Zhang J, Owens G (2013) Cadmium adsorption by willow root: the role of cell walls and their subfractions. Environ Sci Pollut Res 20:5665–5672

    Article  CAS  Google Scholar 

  • Cheng H, Jiang ZY, Liu Y, Ye ZH, Wu ML, Sun CC, Sun FL, Fei J, Wang YS (2014) Metal (Pb, Zn and Cu) uptake and tolerance by mangroves in relation to root anatomy and lignification/suberization. Tree Physiol 34:646–656

    Article  CAS  PubMed  Google Scholar 

  • Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798

    Article  CAS  PubMed  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Schroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO Journal 18:3325–3333

    Google Scholar 

  • Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants and foods. Annu Rev Plant Biol 67:489–512

    Article  CAS  PubMed  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conde A, Chaves MM, Geros H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602. https://doi.org/10.1093/pcp/pcr107

    Article  CAS  PubMed  Google Scholar 

  • Costa G, Morel JL (1993) Cadmium uptake by Lupinus albus (L.): cadmium excretion, a possible mechanism of cadmium tolerance. J Plant Nutr 16:1921–1929

    Article  CAS  Google Scholar 

  • Dal Corso G, Farinati S, Maistri S, Furini A (2008) How plants cope with cadmium: staking all on metabolism and gene expression. J Integr Plant Biol 50(10):1268–1280

    Article  CAS  Google Scholar 

  • Dalcorso G, Manara A, Furini A (2013) An overview of heavy metal challenge in plants: from roots to shoots. R. Soc. Chem 5:1117–1132

    CAS  Google Scholar 

  • Dietz KJ, Bair M, Kramer U (1999) Free radical and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagemeyer J (eds) Heavy metal stress in plants from molecules to ecosystems. Springer, Berlin, pp 73–79

    Chapter  Google Scholar 

  • Ding S, Ma CF, Shi WG, Liu WZ, Lu Y, Liu QF, Luo ZB (2017) Exogenous glutathione enhances cadmium accumulation and alleviates its toxicity in Populus canescens. Tree Physiol 37:1697–1712

    Google Scholar 

  • Drazkiewicz M (1994) Chlorophyll-occurrence, functions, mechanism of action, effects of internal and external factors. Photosynthetica 30:321–331

    CAS  Google Scholar 

  • Duan C, Wang H (1992) Effects of heavy metals on the content of nuclear acids and nuclear enzymatic activities in the root tips of bean (Vicia faba). Environ Sci 13:31–35

    CAS  Google Scholar 

  • Duan C, Wang H (1995) Studies on the cell gene-toxicity of heavy metals to beans and micro-nuclear techniques. Acta Bot Sin 37:14–24

    CAS  Google Scholar 

  • Dubey RS (2011) Metal toxicity, oxidative stress and antioxidative defence system in plants. In: Gupta SD (ed) Reactive oxygen species and antioxidants in higher plants. CRC Press, Boca Raton, pp 177–203

    Google Scholar 

  • Elobeid M, Gobel C, Feussner I, Polle A (2012) Cadmium interferes with auxin physiology and lignification in poplar. J Exp Bot 63:1413–1421

    Article  CAS  PubMed  Google Scholar 

  • Emamverdian A, Ding Y, Mokhberdoran F, **e Y (2015) Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015:756120

    Article  CAS  Google Scholar 

  • Erbasol I, Bozdag GO, Koc A, Pedas P, Karakaya HC (2013) Characterization of two genes encoding metal tolerance proteins from Beta vulgaris subspecies maritima that confers manganese tolerance in yeast. Biometals 26:795–804

    Article  CAS  PubMed  Google Scholar 

  • Ewais EA (1997) Effects of cadmium nickel and lead on growth, chlorophyll content and proteins of weeds. Biol Plant 39:403–410

    Article  CAS  Google Scholar 

  • Foy CD, Hatfild JL, Stewart BA (1992) Soil chemical factors limiting plant root growth, in limitations to plant root growth. Adv Soil Sci 19:97–149

    Article  CAS  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signalling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fozia A, Muhammad AZ, Muhammad A, Zafar MK (2008) Effect of chromium on growth attributes in sunflower (Helianthus annuus L.). J Environ Sci 20:1475–1480

    Article  CAS  Google Scholar 

  • Fusconi A, Repetto O, Bona E et al (2006) Effects of cadmium on meristem activity and nucleus ploidy in roots of Pisum sativum L. cv. Frisson seedlings. Environ Exp Bot 58(1–3):253–260

    Article  CAS  Google Scholar 

  • Gajewska E, Wielanek M, Bergier K, SkÅ‚odowska M (2009) Nickel induced depression of nitrogen assimilation in wheat roots. Acta Physiol Plant 31:1291–1300

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2011) Cadmium stress tolerance in crop plants: probing the role of sulfur. Plant Signal Behav 6:215–222. https://doi.org/10.4161/psb.6.2.14880

    Article  CAS  PubMed  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere 70:1539–1544

    Article  CAS  PubMed  Google Scholar 

  • Ha SB, Smith AP, Howden R, Dietrich WM, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast, Schizosaccharomyces pombe. Plant Cell 11:1153–1164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hajiboland R, Hasani BD (2007) Effect of Cu and Mn toxicity on chlorophyll florescence and gas exchange in rice and sunflower under different light intensities. J Stress Physiol Biochem 3:4–17

    Google Scholar 

  • Halliwell B (2006) Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol 141(2):312–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamer DH (1986) Metallothionein. Annu Rev Biochem 55:913–951

    Article  CAS  PubMed  Google Scholar 

  • Hammett FS (1928) Studies in the biology of metals. Protoplasma 5:535–542

    Article  Google Scholar 

  • Hao F, Wang X, Chen J (2006) Involvement of plasma membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Sci 170(1):151–158

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ali B, Ahmad A (2008) Homobrassinolide protects chickpea (Cicer arietinum) from cadmium toxicity by stimulating antioxidant. Environ Pollut 151:60–66

    Google Scholar 

  • He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H, Cheng X, Luo ZB (2015) Overexpression of bacterial γ-glutamylcysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytol 205:240–254

    Article  CAS  PubMed  Google Scholar 

  • Helleday T, Nilsson R, Jenssen D (2000) Arsenic (III) and heavy metal ions induce intrachromosomal homologous recombination in the hprt gene of V79 Chinese hamster cells. Environ Mol Mutagen 35:114–122

    Article  CAS  PubMed  Google Scholar 

  • Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998) A role for the AKT1 potassium channel in plant nutrition. Science 280:918–921

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Hossain MZ, Fujita M (2009) Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene. Aust J Crop Sci 3(2):53–64

    CAS  Google Scholar 

  • Hossain MA, Hasanuzzaman M, Fujita M (2010) Up-regulation of antioxidant and glyoxalase systems by exogenous glycine betaine and proline in mung bean confer tolerance to cadmium stress. Physiol Mol Biol Plants 16(3):259–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain MA, Piyatida P, Silva JAT, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. J Bot 2012:37

    Google Scholar 

  • Huang TL, Huang LY, Fu SF, Trinh NN, Huang HJ (2014) Genomic profiling of rice roots with short-and long-term chromium stress. Plant Mol Biol 86:157–170. https://doi.org/10.1007/s11103-014-0219-4

    Article  CAS  PubMed  Google Scholar 

  • Jha AB, Dubey RS (2004) Arsenic exposure alters activity behaviour of key nitrogen assimilatory enzymes in growing rice plants. Plant Growth Regul 43(3):259–268

    Article  CAS  Google Scholar 

  • Jiang B, Lan C, Wang B (2001) Heavy metal’s ecological effects ofirrigation with landfill site leachate. China Environ Sci 21(1):18–23

    CAS  Google Scholar 

  • Jonak C, Nakagami H, Hirt H (2004) Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol 136:3276–3283. https://doi.org/10.1104/pp.104.045724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagi JHR (1991) Overview of metallothionein. Methods Enzymol 205:613–626

    Article  CAS  PubMed  Google Scholar 

  • Kasprzak KS (1995) Possible role of oxidative damage in metal induced carcinogenesis. Cancer Investig 13:411–430

    Article  CAS  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plant 116:368–372

    Article  CAS  Google Scholar 

  • Kovalchuk I, Titov V, Hohn B, Kovalchuk O (2005) Transcriptome profiling reveals similarities and differences in plant responses to cadmium and lead. Mutat Res Fundam Mol Mech Mutagen 570:149–161

    Article  CAS  Google Scholar 

  • Kramer U, Talke I, Hanikenne M (2007) Transition metal transport. Feder Eur Biochem Soc Lett 581(12):2263–2272

    Article  CAS  Google Scholar 

  • Krantev A, Yordanova R, Janda T, Szalai G, Popova L (2008) Treatment with salicylic acid decreases the effect of cadmium on photosynthesis in maize plants. J Plant Physiol 165(9):920–931

    Article  CAS  PubMed  Google Scholar 

  • Krupa Z, Baszynski T (1995) Some aspects of heavy metals toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactions. Acta Physiol Plant 17:177–190

    CAS  Google Scholar 

  • Kumar S, Dubey RS, Tripathi RD, Chakrabarty D, Trivedi PK (2015) Omics and biotechnology of arsenic stress and detoxification in plants: current updates and prospective. Environ Int 74:221–230. https://doi.org/10.1016/j.envint.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  • Kumar B, Smita K, Flores LC (2017) Plant mediated detoxification of mercury and lead. Arab J Chem 10:2335–2342. https://doi.org/10.1093/pcp/pcu117

    Article  CAS  Google Scholar 

  • Kupper H, Andresen E (2016) Mechanisms of metal toxicity in plants. Metallomics 8:269–285

    Article  PubMed  Google Scholar 

  • L’Huillier L, D’Auzac J, Durand M, Michaud-Ferriere N (1996) Nickel effects on two maize (Zea mays) cultivars: growth, structure, Ni concentration, and localization. Can J Bot 74:1547–1554

    Article  Google Scholar 

  • Lequeux H, Hermans C, Lutts S, Verbruggen N (2010) Response to copper excess in Arabidopsis thaliana: impact on the root system architecture, hormone distribution, lignin accumulation and mineral profile. Plant Physiol Biochem 48:673–682. https://doi.org/10.1016/j.plaphy.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  • Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71:614–618. https://doi.org/10.1016/j.phytochem.2010.01.005

  • Maksimovic JD, Mojović M, Maksimović V, Römheld V, Nikolic M (2012) Silicon ameliorates manganese toxicity in cucumber by decreasing hydroxyl radical accumulation in the leaf apoplast. J Exp Bot 63:2411–2420

    Article  PubMed  CAS  Google Scholar 

  • Marcus E. V. Schmöger, Matjaz Oven, Grill, E. (2000) Detoxification of Arsenic by Phytochelatins in Plants. Plant Physiology, 122(3):793–801

    Google Scholar 

  • Meharg AA, Jardine L (2003) Arsenite transport into paddy rice (Oryza sativa) roots. New Phytol 157:39–44

    Google Scholar 

  • Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese as essential and toxic element for plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10:476–494

    Article  Google Scholar 

  • Mirshekali H, Hadi H, Amirnia R, Khodaverdiloo H (2012) Effect of zinc toxicity on plant productivity, chlorophyll and Zn contents of sorghum (Sorghum bicolor) and common lambsquarters (Chenopodium album). Int J Agric Res Rev 2:247–254

    Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9(10):490–498

    Article  CAS  PubMed  Google Scholar 

  • Murphy A, Zhou JM, Goldsbrough PB, Taiz L (1997) Purification and immunological identification of metallothioneins 1 and 2 from A. thaliana. Plant Physiol 113:1293–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nath K, Singh DH, Shyam S, Sharma YK (2008) Effect of chromium and tannery effluent toxicity on metabolism and growth in cowpea (Vigna sinensis L. Savi ex Hassk) seedling. Res Environ Life Sci 1:91–94

    Google Scholar 

  • Nematshahi N, Lahouti M, Ganjeali A (2012) Accumulation of chromium and its effect on growth of (Allium cepa cv. Hybrid). Eur J Exp Biol 2:969–974

    CAS  Google Scholar 

  • Oladele EO, Odeigah PGC, Taiwo IA (2013) The genotoxic effect of lead and zinc on bambara groundnut (Vigna subterranean). Afr J Environ Sci Technol 7:9–13

    CAS  Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Parrotta L, Guerriero G, Sergeant K, Cai G, Hausman JF (2015) Target or barrier? The cell wall of early and later-diverging plants vs. cadmium toxicity: differences in the response mechanisms. Front Plant Sci 6:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Parys E, Romanowska E, Siedlecka M, Poskuta J (1998) The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisum sativum. Acta Physiol Plant 20:313–322

    Google Scholar 

  • Peiter E, Montanini B, Gobert A, Pedas P, Husted S, Maathuis FJ, Blaudez D, Chalot M, Sanders D (2007) A secretory pathway-localized cation diffusion facilitator confers plant manganese tolerance. Proc Natl Acad Sci U S A 104:8532–8537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pena LB, Azpilicueta CE, Gallego SM (2011) Sunflower cotyledons cope with copper stress by inducing catalase subunits less sensitive to oxidation. J Trace Elem Med Biol 25:125–129

    Article  CAS  PubMed  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letharn DLD, Lasat MM (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc Natl Acad Sci U S A 97:4956–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peralta-Videa JR, Gardea-Torresdey JL, Gomez E, Tiemann KJ, Parsons JG (2002) Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ Pollut 119:291–293

    Article  CAS  PubMed  Google Scholar 

  • Pitzschke A, Djamei A, Bitton F, Hirt H (2009) A major role of the MEKK1–MKK1/2–MPK4 pathway in ROS signalling. Mol Plant 2:120–137. https://doi.org/10.1093/mp/ssn079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourrut B, Perchet G, Silvestre J, Cecchi M, Guiresse M, Pinelli E (2008) Potential role of NADPH-oxidase in early steps of lead-induced oxidative burst in Vicia faba roots. J Plant Physiol 165(6):571–579

    Google Scholar 

  • Rao KP, Vani G, Kumar K, Wankhede DP, Misra M, Gupta M (2011) Arsenic stress activates MAP kinase in rice roots and leaves. Arch Biochem Biophys 506:73–82. https://doi.org/10.1016/j.abb.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Rezai K, Farboodnia T (2008) Manganese toxicity effects on chlorophyll content and antioxidant enzymes in pea plant (Pisum sativum L. c.v Qazvin). Agric J 3:454–458

    CAS  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10, issn 0264-6021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Río LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29(8):1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Salla V, Hardaway CJ, Sneddon J (2011) Preliminary investigation of Spartina alterniflora for phytoextraction of selected heavy metals in soils from Southwest Louisiana. Microchem J 97:207–212. https://doi.org/10.1016/j.microc.2010.09.005

    Article  CAS  Google Scholar 

  • Sanita Di Toppi L, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41(2):105–130

    Article  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365

    CAS  PubMed  Google Scholar 

  • Seregin IV, Ivanov VB (2001) Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol 48:523–544

    Article  CAS  Google Scholar 

  • Seregin IV, Kozhevnikova AD (2006) Physiological role of nickel and its toxic effects on higher plants. J Plant Physiol 53:257–277

    CAS  Google Scholar 

  • Sethi V, Raghuram B, Sinha AK, Chattopadhyay S (2014) A mitogen activated protein kinase cascade module, MKK3-MPK6 and MYC2, is involved in blue light-mediated seedling development in Arabidopsis. Plant Cell 26:3343–3357. https://doi.org/10.1105/tpc.114.128702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethy SK, Ghosh S (2013) Effect of heavy metals on germination of seeds. J Nat Sci Biol Med 4:272–275

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shahid M, Khalid S, Abbas G, Shahid N, Nadeem M, Sabir M, Aslam M, Dumat C (2015) Heavy metal stress and crop productivity. In: Hakeem KR (ed) Crop production and global environmental issues. Springer InternationalPublishing, Cham, pp 1–25

    Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Sharma P, Dubey RS (2006) Cadmium uptake and its toxicity in higher plants. In: Cadmium toxicity and tolerance in plants, pp 64–86

    Google Scholar 

  • Sharma P, Dubey RS (2007) Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic concentrations of aluminium. Plant Cell Rep 26:2027–2038

    Article  CAS  PubMed  Google Scholar 

  • Shi WG, Liu W, Yu W, Zhang Y, Ding S, Li H, Mrak T, Kraigher H, Luo ZB (2019) Abscisic acid enhances lead translocation from the roots to the leaves and alleviates its toxicity in Populus canescens. J Hazard Mater 362:275–285

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui MM, Abbasi BH, Ahmad N, Ali M, Mahmood T (2014) Toxic effects of heavy metals (Cd, Cr and Pb) on seed germination and growth and DPPH-scavenging activity in Brassica rapa var. turnip. Toxicol Ind Health 30:238–249

    Google Scholar 

  • Siedlecka A, BaszynAski T (1993) Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant 87(2):199–202

    Article  CAS  Google Scholar 

  • Siedlecka A, Samuelsson G, Gardenstrom P, Kleczkowski LA, Krupa Z (1998) The activatory model of plant response to moderate cadmium stress-relationship between carbonic anhydrase and Rubisco. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic Publishers, Dordrecht, pp 2677–2680

    Chapter  Google Scholar 

  • Smeets K, Opdenakker K, Remans T, Forzani C, Hirt H, Vangronsveld J (2013) The role of the kinase OXI1 in cadmium- and copper-induced molecular responses in Arabidopsis thaliana. Plant Cell Environ 36:1228–1238. https://doi.org/10.1111/pce.12056

    Article  CAS  PubMed  Google Scholar 

  • Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129–1140

    Article  CAS  Google Scholar 

  • Steinhorst L, Kudla J (2014) Signaling in cells and organisms-calcium holds the line. Curr Opin Plant Biol 22:14–21. https://doi.org/10.1016/j.pbi.2014.08.003

    Article  CAS  PubMed  Google Scholar 

  • Takahashi F, Mizoguchi T, Yoshida R, Ichimura K, Shinozaki K (2011) Calmodulin-dependent activation of MAP kinase for ROS homeostasis in Arabidopsis. Mol Cell 41:649–660. https://doi.org/10.1016/j.molcel.2011.02.029

    Article  CAS  PubMed  Google Scholar 

  • Thomine S, Wang R, Ward JM, Crawford NM, Schroeder JI (2000) Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc Natl Acad Sci U S A 97:4991–4996

    Google Scholar 

  • Tian S, **e R, Wang H, Hu Y, Hou D, Liao X, Brown PH, Yang H, Lin X, Labavitch JM (2017) Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii. J Exp Bot 68:2387–2398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Todeschini V, Lingua G, D’Agostino G, Carniato F, Roccotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot 71:50–56

    Article  CAS  Google Scholar 

  • Todorovic S, Giba Z, Simonovíc A, Bozic D, Banjanac T, Grubisic D (2009) Manganese effects on in vitro development of lesser centaury [Centaurium pulchellum (Sw.) Druce]. Arch Biol Sci 61:279–283

    Article  Google Scholar 

  • Truta EC, Gherghel DN, Bara ICI, Vochita GV (2013) Zinc-induced genotoxic effects in root meristems of barley seedlings. Notulae Botanicae Hortic Agrobotanici Cluj-Napoca 41:150–156

    Article  CAS  Google Scholar 

  • Tung G, Temple PJ (1996) Uptake and localization of lead in corn (Zea mays L.) seedlings, a study by histochemical and electron microscopy. Sci Total Environ 188:71–85

    Article  CAS  PubMed  Google Scholar 

  • Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  • Vassilev A, Nikolova A, Koleva L, Lidon F (2011) Effects of excess Zn on growth and photosynthetic performance of young bean plants. J Phytology 3:58–62

    CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    Article  CAS  PubMed  Google Scholar 

  • Verma PK, Verma S, Pande V, Mallick S, Tripathi RD, Dhankher OP (2016) Overexpression of rice glutaredoxin OsGrx_C7 and OsGrx_C2.1 reduces intra cellular arsenic accumulation and increases tolerance in Arabidopsis thaliana. Front Plant Sci 7:740

    PubMed  PubMed Central  Google Scholar 

  • Vijayarengan P, Mahalakshmi G (2013) Zinc toxicity in tomato plants. World Appl Sci J 24:649–653

    Google Scholar 

  • Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011) Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11(9):1650–1663

    Article  CAS  PubMed  Google Scholar 

  • Wang JP, Raman H, Zhang GP, Mendham N, Zhou MX (2006) Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ 7:769–787

    Article  CAS  Google Scholar 

  • Wang Y, Shen H, Xu L, Zhu X, Li C, Zhang W, **e Y, Gong Y, Liu L (2015) Transport, ultrastructural localization, and distribution of chemical forms of lead in radish (Raphanus sativus L.). Front Plant Sci 6:293

    PubMed  PubMed Central  Google Scholar 

  • White PJ (2005) Studying calcium channels from the plasma membrane of plant root cells in planar lipid bilayers. Adv Planar Lipid Bilayers Liposomes 1:101–120

    Article  Google Scholar 

  • Wierzbicka M (1994) Resumption of mitotic activity in Allium cepa L. root tips during treatment with lead salts. Environ Exp Bot 34:173–180

    Article  CAS  Google Scholar 

  • **ong T, Leveque T, Shahid M, Foucault Y, Mombo S, Dumat C (2014) Lead and cadmium phytoavailability and human bioaccessibility for vegetables exposed to soil or atmospheric pollution by process ultrafine particles. J Environ Qual 43:1593–1600. https://doi.org/10.2134/jeq2013.11.0469

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Shi G (2000) The toxic effects of single Cd and interaction of Cd with Zn on some physiological index of [Oenanthe javanica (Blume) DC]. Nat Sci 23(4):97–100

    CAS  Google Scholar 

  • Yang Z, Chu C (2011) Towards understanding plant response to heavy metal stress. In: Abiotic stress in plants—mechanisms and adaptations. InTech, Shanghai, pp 59–78

    Google Scholar 

  • Yang XE, ** XF, Feng Y, Islam E (2005) Molecular mechanisms and genetic basis of heavy metal tolerance/hyperaccumulation in plants. J Integr Plant Biol 47(9):1025–1035

    Article  CAS  Google Scholar 

  • Yeh CM, Hsiao LJ, Huang HJ (2004) Cadmium activates a mitogen-activated protein kinase gene and MBP kinases in rice. Plant Cell Physiol 45:1306–1312. https://doi.org/10.1093/pcp/pch135

    Article  CAS  PubMed  Google Scholar 

  • Yeh CM, Chien PS, Huang HJ (2007) Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots. J Exp Bot 58:659–671. https://doi.org/10.1093/jxb/erl240

    Article  CAS  PubMed  Google Scholar 

  • Yin Y, Wang Y, Liu Y, Zeng G, Hu X, Hu X, Zhou L, Guo Y, Li J (2015) Cadmium accumulation and apoplastic and symplastic transport in Boehmeria nivea (L.) Gaudich on cadmium-contaminated soil with the addition of EDTA or NTA. Rsc Adv 5:47584–47591

    Article  CAS  Google Scholar 

  • Yusuf M, Fariduddin Q, Hayat S, Hasan SA, Ahmad A (2010) Protective responses of 28 homobrassinolide in cultivars of Triticum aestivum with different levels of nickel. Arch Environ Contam Toxicol 60:68–76

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Mo H (1997) Detoxification of ascorbic acid and molysite on the root growth of garlic under cadmium pollution. J Wuhan Bot Res 15(2):167–172

    Google Scholar 

  • Zhao D, Li T, Shen M, Wang J, Zhao Z (2015) Diverse strategies conferring extreme cadmium (Cd) tolerance in the dark septate endophyte (DSE), Exophiala pisciphila: evidence from RNA-seq data. Microbiol Res 170:27–35. https://doi.org/10.1016/j.micres.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

  • Zhou ZS, Guo K, Elbaz AA, Yang ZM (2009) Salicylic acid alleviates mercury toxicity by preventing oxidative stress in roots of Medicago sativa. Environ Exp Bot 65:27–34

    Article  CAS  Google Scholar 

  • Zou J, Wang M, Jiang W, Liu D (2006) Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biol Cracov Ser Bot 48:7–12

    Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge Council of Scientific and Industrial Research, Govt. of India (Ref. No. 38(1417)/16/EMR-II, dated: 17/05/2016 to SR), and SERB, DST, Govt. of India (Ref. No. ECR/2016/000539 to SR), for providing necessary financial supports. KM and SB thank CSIR, Govt. of India, for the JRF fellowship. The authors gratefully acknowledge the contribution of Ms. Sayanti De for preparing the schematic representations of the data.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahapatra, K., Banerjee, S., Roy, S. (2020). The Hows and Whys of Heavy Metal-Mediated Phytotoxicity: An Insight. In: Faisal, M., Saquib, Q., Alatar, A.A., Al-Khedhairy, A.A. (eds) Cellular and Molecular Phytotoxicity of Heavy Metals. Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-45975-8_2

Download citation

Publish with us

Policies and ethics

Navigation