Catalysts via Atomic Layer Deposition

  • Chapter
  • First Online:
Recent Advances in Nanoparticle Catalysis

Part of the book series: Molecular Catalysis ((MOLCAT,volume 1))

Abstract

Heterogeneous catalysis is crucial to chemical industries, environmental protection, energy storage, and conversion. The demand for catalysts with high activity, selectivity, and stability drives the development of controlled and precise synthesis of catalysts. An atomic-level control of catalyst structure will not only provide better catalytic performance, but also help understanding the fundamental catalytic mechanism and the associated structure–property relationship. Recently, atomic layer deposition (ALD) has attracted great interest as an effective method of catalyst design and synthesis due to its high controllability and uniformity for fabricating complex structures at the atomic level. Herein, the ALD technique for tailoring active sites and composite structures of catalysts will be introduced and discussed, which cover both supported metal catalysts and metal/oxide composite catalysts. In particular, various strategies by modifying ALD processes will be presented for the size, composition, and structure control of supported metal, alloy, and core–shell nanoparticles. Several metal oxide composite structures are developed by adjusting the metal oxide ALD processes, including porous overcoating structures, confined coating, and selective coating structures. Finally, we wrap up the chapter with the latest developments in ALD reactor design for catalysts synthesis and a summary and perspectives of ALD method for catalysts synthesis and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
EUR 16.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhong L, Yu F, An Y et al (2016) Cobalt carbide nanoprisms for direct production of lower olefins from syngas. Nature 538:84–87

    CAS  PubMed  Google Scholar 

  2. Li L, Zhang N, Huang X, Liu et al (2018) Hydrothermal stability of core–shell Pd@Ce0.5Zr0.5O2/Al2O3 catalyst for automobile three-way reaction. ACS Catal 8:3222–3231

    Google Scholar 

  3. García-Diéguez M, Pieta IS, Herrera MC, Larrubia MA, Alemany LJ (2010) Nanostructured Pt-and Ni-based catalysts for CO2-reforming of methane. J Catal 270:136–145

    Google Scholar 

  4. Meng Y, Song W, Huang H, Ren Z, Chen SY, Suib SL (2014) Structure–property relationship of bifunctional MnO2 nanostructures: highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J Am Chem Soc 136:11452–11464

    CAS  PubMed  Google Scholar 

  5. Yin P, Yao T, Wu Y, Zheng L et al (2016) Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew Chem Int Ed 55:10800–10805

    CAS  Google Scholar 

  6. Cao K, Cai J, Liu X (2018) Catalysts design and synthesis via selective atomic layer deposition. J Vac Sci Technol, A 36:010801

    Google Scholar 

  7. Hämäläinen J (2013) Atomic layer deposition of noble metal oxide and noble metal thin films. University of Helsinki, Finland

    Google Scholar 

  8. George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131

    CAS  PubMed  Google Scholar 

  9. Puurunen RL (2005) Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process. J Appl Phys 97:121301

    Google Scholar 

  10. Miikkulainen V, Leskelä M, Ritala et al (2013) Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J Appl Phys 113:021301

    Google Scholar 

  11. Lim BS, Rahtu A, Gordon RG (2003) Atomic layer deposition of transition metals. Nat Mater 2:749–754

    CAS  PubMed  Google Scholar 

  12. Johnson RW, Hultqvist A, Bent SF (2014) A brief review of atomic layer deposition: from fundamentals to applications. Mater Today 17:236–246

    CAS  Google Scholar 

  13. Johansson AC, Larsen JV, Verheijen MA et al (2014) Electrocatalytic activity of atomic layer deposited Pt-Ru catalysts onto N-doped carbon nanotubes. J Catal 311:481–486

    CAS  Google Scholar 

  14. Hämäläinen J, Rital M, Leskelä M (2013) Atomic layer deposition of noble metals and their oxides. Chem Mater 26:786–801

    Google Scholar 

  15. Setthapun W, Williams WD, Kim S et al (2010) Genesis and evolution of surface species during Pt atomic layer deposition on oxide supports characterized by in situ XAFS analysis and water- gas shift reaction. J Phys Chem C 114:9758–9771

    CAS  Google Scholar 

  16. Li J, Zhang B, Chen Y et al (2015) Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition. Catal Sci Technol 5:4218–4223

    CAS  Google Scholar 

  17. Aaltonen T, Ritala M, Tung YL et al (2004) Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature. J Mater Res 19:3353–3358

    CAS  Google Scholar 

  18. Zhou Y, King DM, Liang X et al (2010) Optimal preparation of Pt/TiO2 photocatalysts using atomic layer deposition. Appl Catal B 101:54–60

    CAS  Google Scholar 

  19. Hämäläinen J, Puukilainen E, Sajavaara et al (2013) Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants. Thin Solid Films 531:243–250

    Google Scholar 

  20. Xu S, Kim Y, Park J et al (2018) Extending the limits of Pt/C catalysts with passivation-gas-incorporated atomic layer deposition. Nat Catal 1:624

    CAS  Google Scholar 

  21. Ren W, Zhang H, Cheng C (2017) Ultrafine Pt nanoparticles decorated MoS2 nanosheets with significantly improved hydrogen evolution activity. Electrochim Acta 241:316

    CAS  Google Scholar 

  22. Elam JW, Zinovev A, Han CY et al (2006) Atomic layer deposition of palladium films on Al2O3 surfaces. Thin Solid Films 515:1664–1673

    CAS  Google Scholar 

  23. TenEyck GA, Pimanpang S, Bakhru H et al (2006) Atomic layer deposition of Pd on an oxidized metal substrate. Chem Vap Deposition 12:290–294

    CAS  Google Scholar 

  24. Senkevich JJ, Tang F, Rogers D et al (2003) Substrate-independent palladium atomic layer deposition. Chem Vap Deposition 9:258–264

    CAS  Google Scholar 

  25. Feng H, Elam JW, Libera JA et al (2010) Palladium catalysts synthesized by atomic layer deposition for methanol decomposition. Chem Mater 22:3133–3142

    CAS  Google Scholar 

  26. Feng H, Libera JA, Stair PC et al (2011) Subnanometer palladium particles synthesized by atomic layer deposition. ACS Catal 1:665–673

    CAS  Google Scholar 

  27. Jiang Y, Chen J, Zhang J et al (2017) Controlled decoration of Pd on Ni (OH)2 nanoparticles by atomic layer deposition for high ethanol oxidation activity. Appl Surf Sci 420:214–221

    CAS  Google Scholar 

  28. Wang J, Liu C, Lushington A et al (2016) Pd on carbon nanotubes-supported Ag for formate oxidation: the effect of Ag on anti-poisoning performance. Electrochim Acta 210:285–292

    CAS  Google Scholar 

  29. Hong Y, Du H, Hu Y et al (2015) Precisely controlled porous alumina overcoating on pd catalyst by atomic layer deposition: enhanced selectivity and durability in hydrogenation of 1,3-butadiene. ACS Catal 5:2735–2739

    Google Scholar 

  30. Lei Y, Lu J, Luo X et al (2013) Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: application for rechargeable lithium-O2 battery. Nano Lett 13:4182–4189

    CAS  PubMed  Google Scholar 

  31. Aaltonen T, Ritala M, Sammelselg V et al (2004) Atomic layer deposition of iridium thin films. J. Electrochem Soc 151:489–492

    Google Scholar 

  32. Choi BH, Lee JH, Lee HK et al (2011) Effect of interface layer on growth behavior of atomic-layer-deposited Ir thin film as novel Cu diffusion barrier. Appl Surf Sci 257:9654–9660

    CAS  Google Scholar 

  33. Silvennoinen RJ, Jylhä OJT, Lindblad M et al (2007) Supported iridium catalysts prepared by atomic layer deposition: effect of reduction and calcination on activity in toluene hydrogenation. Catal Lett 114:135–144

    CAS  Google Scholar 

  34. Vuori H, Silvennoinen RJ, Lindblad M et al (2009) Beta zeolite-supported iridium catalysts by gas phase deposition. Catal Lett 131:7–15

    CAS  Google Scholar 

  35. Park KJ, Parsons GN (2006) Selective area atomic layer deposition of rhodium and effective work function characterization in capacitor structures. Appl Phys Lett 89:043111

    Google Scholar 

  36. Li Y, Jiang J, Zhu C et al (2018) The enhanced catalytic performance and stability of Rh/γ-Al2O3 Catalyst Synthesized By Atomic Layer Deposition (ALD) for methane dry reforming. Materials 11:172

    PubMed Central  Google Scholar 

  37. Gould TD, Lubers AM, Neltner BT et al (2013) Synthesis of supported Ni catalysts by atomic layer deposition. J Catal 303:9–15

    CAS  Google Scholar 

  38. Gao Z, Dong M, Wang G et al (2015) Multiply confined nickel nanocatalysts produced by atomic layer deposition for hydrogenation reactions. Angew Chem 54:9006–9010

    CAS  Google Scholar 

  39. Lindblad M, Lindfors LP, Suntola T (1994) Preparation of Ni/Al2O3 catalysts from vapor phase by atomic layer epitaxy. Catal Lett 27:323–336

    CAS  Google Scholar 

  40. Jacobs JP, Lindfors LP, Reintjes JGH et al (1994) The growth mechanism of nickel in the preparation of Ni/Al2O3 catalysts studied by LEIS, XPS and catalytic activity. Catal Lett 25:315–324

    CAS  Google Scholar 

  41. Kim DH, Sim JK, Seo HO et al (2013) Carbon dioxide reforming of methane over mesoporous Ni/SiO2 catalyst. Fuel 112:111–116

    CAS  Google Scholar 

  42. Jiang C, Shang Z, Liang X (2015) Chemoselective transfer hydrogenation of nitroarenes catalyzed by highly dispersed, supported nickel nanoparticles. ACS Cata 5:4814–4818

    CAS  Google Scholar 

  43. Mårtensson P, Larsson K, Carlsson JO (2000) Atomic layer epitaxy of copper: an ab initio investigation of the CuCl/H2 process: III. Reaction barriers. Appl Surface Sci 157:92–100

    Google Scholar 

  44. Li Z, Rahtu A, Gordon RG (2006) Atomic layer deposition of ultrathin copper metal films from a liquid copper (I) amidinate precursor. J Electrochem Soc 153:C787–C794

    CAS  Google Scholar 

  45. Chen CS, Lin JH, Lai TW et al (2009) Active sites on Cu/SiO2 prepared using the atomic layer epitaxy technique for a low-temperature water-gas shift reaction. J Catal 263:155–166

    CAS  Google Scholar 

  46. Gao F, Jiang J, Du L et al (2018) Stable and highly efficient Cu/TiO2 nanocomposite photocatalyst prepared through atomic layer deposition. Appl Catal A 568:168–175

    CAS  Google Scholar 

  47. Najafabadi AT, Khodadadi AA, Parnian MJ et al (2016) Atomic layer deposited Co/γ-Al2O3 catalyst with enhanced cobalt dispersion and Fischer-Tropsch synthesis activity and selectivity. Appl Catal A 511:31–46

    Google Scholar 

  48. Lee D, Yim S, Kim K, Kim J, Kim K (2008) Formation of Ru nanotubes by atomic Llyer deposition onto an anodized aluminum oxide template. Electrochem Solid State Lett 11:K61–K63

    CAS  Google Scholar 

  49. Lu J, Stair PC (2010) Low temperature ABC-type atomic layer deposition: synthesis of highly uniform ultrafine supported metal nanoparticles. Angew Chem Int Ed 49:2547–2551

    CAS  Google Scholar 

  50. Li J, Liang X, King DM, Jiang YB, Weimer AW (2010) Highly dispersed Pt nanoparticle catalyst prepared by atomic layer deposition. Appl Catal B 97:220–226

    CAS  Google Scholar 

  51. Hämäläinen J, Hatanpää T, Puukilainen E, Costelle L, Pilvi T, Ritala M, Leskelä M (2010) (MeCp) Ir (CHD) and molecular oxygen as precursors in atomic layer deposition of iridium. J Mater Chem 20:7669–7675

    Google Scholar 

  52. Wang G, Gao Z, Wan G, Lin S, Yang P, Qin Y (2014) High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Research 7:704–716

    CAS  Google Scholar 

  53. Yang X, Wang A, Qiao B et al (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 44:1740–1748

    Google Scholar 

  54. Shekhar M, Wang J, Lee W et al (2012) Size and support effects for the water-gas shift catalysis over gold nanoparticles supported on model Al2O3 and TiO2. J Am Chem Soc 134:4700–4708

    CAS  PubMed  Google Scholar 

  55. Cargnello M, Doan-Nguyen V, Gordon T et al (2013) Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science 341:771–773

    CAS  PubMed  Google Scholar 

  56. Enterkin J, Setthapun W, Elam J et al (2011) Propane oxidation over Pt/SrTiO3 nanocuboids. ACS Catal 1:629–635

    CAS  Google Scholar 

  57. Mackus A, Weber M, Thissen N et al (2016) Atomic layer deposition of Pd and Pt nanoparticles for catalysis: on the mechanisms of nanoparticle formation. Nanotechnology 27:034001

    PubMed  Google Scholar 

  58. Goulas A, Van Ommen JV (2013) Atomic layer deposition of platinum clusters on titania nanoparticles at atmospheric pressure. J Mater Chem A 1:4647–4650

    CAS  Google Scholar 

  59. Bui H, Grillo F, Kulkarni S et al (2017) Low-temperature atomic layer deposition delivers more active and stable Pt-based catalysts. Nanoscale 9:10802–10810

    PubMed  Google Scholar 

  60. Gould T, Lubers A, Corpuz A et al (2015) Controlling nanoscale properties of supported platinum catalysts through atomic layer deposition. ACS Catal 5:1344–1352

    CAS  Google Scholar 

  61. Dendooven J, Ramachandran R, Solano E et al (2017) Independent tuning of size and coverage of supported Pt nanoparticles using atomic layer deposition. Nat Commun 8:1074

    PubMed  PubMed Central  Google Scholar 

  62. Zhang L, Banis M, Sun X (2018) Single-atom catalysts by the atomic layer deposition technique. Natl Sci Rev 5:628–630

    CAS  Google Scholar 

  63. Cheng N, Stambula S, Wang D et al (2016) Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun 7:13638

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu X, Tang Y, Shen M et al (2018) Bifunctional CO oxidation over Mn-mullite anchored Pt sub-nanoclusters via atomic layer deposition. Chem Sci 9:2469–2473

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang C, Gu X, Yan H et al (2017) Water-mediated Mars-van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal 7:887–891

    CAS  Google Scholar 

  66. Yan H, Cheng H, Yi H et al (2015) Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J Am Chem Soc 137:10484–10487

    CAS  PubMed  Google Scholar 

  67. Yan H, Lv H, Yi H et al (2018) Understanding the underlying mechanism of improved selectivity in Pd1 single-atom catalyzed hydrogenation reaction. J Catal 366:70–79

    CAS  Google Scholar 

  68. Yan H, Zhao X, Guo N et al (2018) Atomic engineering of high-density isolated Co atoms on graphene with proximal-atom controlled reaction selectivity. Nat Commun 9:3197

    PubMed  PubMed Central  Google Scholar 

  69. Li Z, Schweitzer N, League A et al (2016) Sintering-resistant single-site nickel catalyst supported by metal-organic framework. J Am Chem Soc 138:1977–1982

    CAS  PubMed  Google Scholar 

  70. Cao Y, Chen S, Luo Q et al (2017) Atomic-level insight into optimizing the hydrogen evolution pathway over a Co1-N4 single-site photocatalyst. Angew Chem Int Ed 56:12191–12196

    CAS  Google Scholar 

  71. Weber MJ, Mackus AJM, Verheijen MA et al (2012) Supported core/shell bimetallic nanoparticles synthesis by atomic layer deposition. Chem Mater 24:2973–2977

    CAS  Google Scholar 

  72. Weber MJ, Verheijen MA, Bol AA et al (2015) Sub-nanometer dimensions control of core/shell nanoparticles prepared by atomic layer deposition. Nanotechnology 26:094002

    CAS  PubMed  Google Scholar 

  73. Lu J, Low K, Lei Y et al (2014) Toward atomically-precise synthesis of supported bimetallic nanoparticles using atomic layer deposition. Nat Commun 5:3264

    PubMed  Google Scholar 

  74. Cao K, Zhu Q, Shan B et al (2015) Controlled synthesis of Pd/Pt core shell nanoparticles using area-selective atomic layer deposition. Sci Rep 5:8470

    Google Scholar 

  75. Wang H, Wang C, Yan H et al (2015) Precisely-controlled synthesis of Au@Pd core-shell bimetallic catalyst via atomic layer deposition for selective oxidation of benzyl alcohol. J Catal 324:59–68

    CAS  Google Scholar 

  76. Christensen ST, Feng H, Libera JL et al (2010) Supported Ru-Pt bimetallic nanoparticle catalysts prepared by atomic layer deposition. Nano Lett 10:3047–3051

    CAS  PubMed  Google Scholar 

  77. Cao K, Gong M, Yang JF, Cai JM, Chu SQ, Chen ZP, Shan B, Chen R (2019) Nickel catalyst with atomically-thin meshed cobalt coating for improved durability in dry reforming of methane. J Catal 373:351–360

    CAS  Google Scholar 

  78. Vandegehuchte BD, Thybaut JW, Detavernier C et al (2014) A single-event microkinetic assessment of n-alkane hydroconversion on ultrastable Y zeolites after atomic layer deposition of alumina. J Catal 311:433–446

    CAS  Google Scholar 

  79. Ge H, Zhang B, Gu X et al (2016) A tandem catalyst with multiple metal oxide interfaces produced by atomic layer deposition. Angew Chem Int Ed 55:7081–7085

    CAS  Google Scholar 

  80. Wang M, Gao Z, Zhang B et al (2016) Ultrathin coating of confined Pt nanocatalysts by atomic layer deposition for enhanced catalytic performance in hydrogenation reactions. Chem Eur J 22:8438–8443

    CAS  PubMed  Google Scholar 

  81. O’Neill BJ, Jackson DHK, Crisci AJ et al (2013) Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. Angew Chem Int Ed 52:13808–13812

    Google Scholar 

  82. Feng H, Lu JL, Stair PC et al (2011) Alumina over-coating on Pd nanoparticle catalysts by atomic layer deposition: enhanced stability and reactivity. Catal Lett 141:512–517

    CAS  Google Scholar 

  83. Lu J, Fu B, Kung MC et al (2012) Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335:1205–1208

    CAS  PubMed  Google Scholar 

  84. Zhang H, Gu X-K, Canlas C et al (2014) Atomic layer deposition overcoating: tuning catalyst selectivity for biomass conversion. Angew Chem Int Ed 53:12132–12136

    CAS  Google Scholar 

  85. Yi H, Du H, Hu Y et al (2015) Precisely controlled porous alumina overcoating on Pd catalyst by atomic layer deposition: enhanced selectivity and durability in hydrogenation of 1,3-Butadiene. ACS Catalysis 5:2735–2739

    CAS  Google Scholar 

  86. Zhang H, Canlas C, Kropf AJ et al (2015) Enhancing the stability of copper chromite catalysts for the selective hydrogenation of furfural with ALD overcoating (II) - Comparison between TiO2 and Al2O3 overcoatings. J Catal 326:172–181

    CAS  Google Scholar 

  87. Alba-Rubio AC, O’Neill BJ, Shi F et al (2014) Pore structure and bifunctional catalyst activity of overlayers applied by atomic layer deposition on copper nanoparticles. ACS Catal 4:1554–1557

    CAS  Google Scholar 

  88. O’Neill BJ, Sener C, Jackson DHK et al (2014) Control of thickness and chemical properties of atomic layer deposition overcoats for stabilizing Cu/γ-Al2O3 catalysts. Chem Sustain Chem 7:3247–3251

    Google Scholar 

  89. Canlas CP, Lu JL, Ray NA et al (2012) Shape-selective sieving layers on an oxide catalyst surface. J Nat Gas Chem 4:1030

    CAS  Google Scholar 

  90. Wang CL, Lu JL (2016) Sub-nanometer-thick Al2O3 overcoat remarkably enhancing thermal stability of supported gold catalysts. Chin J Chem Phys 29:571

    Google Scholar 

  91. Zhao Y, Kang YQ, Li H et al (2018) CO2 conversion to synthesis gas via DRM on the durable Al2O3/Ni/Al2O3 sandwich catalyst with high activity and stability. Green Chem 20:2781

    CAS  Google Scholar 

  92. Lei Y, Lee S, Low K-B et al (2016) Combining electronic and geometric effects of ZnO-promoted Pt nanocatalysts for aqueous phase reforming of 1-Propanol. ACS Catal 6:3457–3460

    CAS  Google Scholar 

  93. Kayaci F, Vempati S, Ozgit-Akgun C et al (2014) Selective isolation of the electron or hole in photocatalysis: ZnO-TiO2 and TiO2-ZnO core-shell structured heterojunction nanofibers via electrospinning and atomic layer deposition. Nanoscale 6:5735–5745

    CAS  PubMed  Google Scholar 

  94. Jiang F, Huang J, Niu L et al (2015) Atomic layer deposition of ZnO thin films on ZSM-5 zeolite and its catalytic performance in chichibabin reaction. Catal Lett 145:947–954

    CAS  Google Scholar 

  95. Wang WN, Wu F, Myung Y et al (2015) Surface engineered CuO nanowires with ZnO islands for CO2 photoreduction. ACS Appl Mater Interfaces 7:5685–5692

    CAS  PubMed  Google Scholar 

  96. Liu J, Sun C, Fu M et al (2018) Enhanced photochemical catalysis of TiO2 inverse opals by modification with ZnO or Fe2O3 using ALD and the hydrothermal method. Mater Res Express 5:025509

    Google Scholar 

  97. Kim IS, Michael J, Pellin et al (2019) Acid-compatible halide perovskite photocathodes utilizing atomic layer deposited TiO2 for solar-driven hydrogen evolution. ACS Energy Lett 4:293–298

    Google Scholar 

  98. Lee J, Jackson DHK, Li T et al (2014) Enhanced stability of cobalt catalysts by atomic layer deposition for aqueous-phase reactions. Energy Environ Sci 7:1657–1660

    CAS  Google Scholar 

  99. Liang H, Zhang B, Ge H et al (2017) Porous TiO2/Pt/TiO2 sandwich catalyst for highly selective semihydrogenation of alkyne to olefin. ACS Catal 7:6567–6572

    CAS  Google Scholar 

  100. Wang C, Wang H, Yao Q et al (2016) Precisely applying TiO2 overcoat on supported Au catalysts using atomic layer deposition for understanding the reaction mechanism and improved activity in CO oxidation. J Phys Chem C 120:478–486

    CAS  Google Scholar 

  101. Yao Q, Wang C, Wang H et al (2016) Revisiting the Au particle size effect on TiO2-coated Au/TiO2 catalysts in CO oxidation reaction. J Phys Chem C 120:9174–9183

    CAS  Google Scholar 

  102. Biener MM, Biener J, Wichmann A et al (2011) ALD functionalized nanoporous gold: thermal stability, mechanical properties, and catalytic activity. Nano Lett 11:3085–3090

    CAS  PubMed  Google Scholar 

  103. Kim DW, Kim KD, Seo HO et al (2011) TiO2/Ni inverse-catalysts prepared by atomic layer deposition (ALD). Catal Lett 141:854–859

    CAS  Google Scholar 

  104. Seo HO, Sim JK, Kim KD et al (2013) Carbon dioxide reforming of methane to synthesis gas over a TiO2-Ni inverse catalyst. Appl Catal A 451:43–49

    CAS  Google Scholar 

  105. Kim HJ, Jackson DHK, Lee J et al (2015) Enhanced activity and stability of TiO2-coated cobalt/carbon catalysts for electrochemical water oxidation. ACS Catal 5:3463–3469

    CAS  Google Scholar 

  106. Lobo R, Marshall CL, Dietrich PJ et al (2012) Understanding the chemistry of H2 production for 1-propanol reforming: pathway and support modification effects. ACS Catal 2:2316–2326

    CAS  Google Scholar 

  107. Kennedy RM, Crosby LA, Kunlun D et al (2018) Replication of SMSI via ALD: TiO2 overcoats increase Pt-catalyzed acrolein hydrogenation selectivity. Catal Lett 148:2223–2232

    CAS  Google Scholar 

  108. Huang B, Cao K, Liu X et al (2015) Tuning the morphology and composition of ultrathincobalt oxide films via atomic layer deposition. RSC Adv 7:71816–71823

    Google Scholar 

  109. Li Y, Zhao S, Hu Q et al (2017) Highly efficient CoOx/SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene. Catal Sci Technol 7:2032–2038

    CAS  Google Scholar 

  110. Zhang J, Yu Z, Gao Z et al (2017) Porous TiO2 nanotubes with spatially separated platinum and CoOx cocatalysts produced by atomic layer deposition for photocatalytic hydrogen production. Angew Chem Int Ed 56:816–820

    CAS  Google Scholar 

  111. Liu X, Zhu Q, Lang Y et al (2017) Oxide-nanotrap-anchored platinum nanoparticles with high activity and sintering resistance by area-Selective atomic layer deposition. Angew Chem Int Ed 56:1648–1652

    CAS  Google Scholar 

  112. Deng W, Lee S, Libera JA et al (2011) Cleavage of the C–O–C bond on size-selected subnanometer cobalt catalysts and on ALD-cobalt coated nanoporous membranes. Appl Catal A- General 393:29–35

    CAS  Google Scholar 

  113. Huang B, Yang W, Wen Y et al (2015) Co3O4-modified TiO2 nanotube arrays via atomic layer deposition for improved visible-light photoelectrochemical performance. ACS Appl Mater Interfaces 7:422–431

    CAS  PubMed  Google Scholar 

  114. Zhang C, Huang B, Qian LH et al (2016) Electrochemical biosensor based on nanoporous Au/CoO core-shell with synergistic catalysis. ChemPhysChem 17:98–104

    CAS  PubMed  Google Scholar 

  115. Du C, Wang J, Liu X et al (2017) Ultrathin CoOx-modified hematite with low onset potential for solar water oxidation. Phys Chem Chem Phys 19:14178–14184

    CAS  PubMed  Google Scholar 

  116. Hu Q, Wang S, Gao Z, Li Y et al (2017) The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Appl Catal B 218:591–599

    CAS  Google Scholar 

  117. Yi H, **a Y, Yan H et al (2017) Coating Pd/Al2O3 catalysts with FeOx enhances both activity and selectivity in 1,3-butadiene hydrogenation. Chin J Catal 38:1581–1587

    CAS  Google Scholar 

  118. Zhang B, Guo X-W, Liang H et al (2016) Tailoring Pt-Fe2O3 interfaces for selective reductive coupling reaction to synthesize imine. ACS Catal 6:6560–6566

    CAS  Google Scholar 

  119. Lin YJ, Zhou S, Sheehan SW et al (2011) Nanonet-based hematite heteronanostructures for efficient solar water splitting. J Am Chem Soc 133:2398–2401

    CAS  PubMed  Google Scholar 

  120. Li JJ, Lu JL (2017) FeOx coating on Pd/C catalyst by atomic layer deposition enhances the catalytic activity in dehydrogenation of formic acid. J Chem Phys 30:319–324

    CAS  Google Scholar 

  121. Jeong MG, Kim IH, Han SW et al (2016) Room temperature CO oxidation catalyzed by NiO particles on mesoporous SiO2 prepared via atomic layer deposition: influence of pre-annealing temperature on catalytic activity. J Molecular Catal A-Chem 414:87–93

    CAS  Google Scholar 

  122. Han SW, Kim DH, Jeong M-G et al (2016) CO oxidation catalyzed by NiO supported on mesoporous Al2O3 at room temperature. Chem Eng J 283:992–998

    CAS  Google Scholar 

  123. Cai JM, Zhang J, Cao K et al (2018) Selective passivation of Pt nanoparticles with enhanced sintering resistance and activity toward CO oxidation via atomic layer deposition. ACS Appl Nano Mater 1:522–530

    CAS  Google Scholar 

  124. O’Neill BJ, Sener C, Jackson DHK et al (2014) Control of thickness and chemical properties of atomic layer deposition overcoats for stabilizing Cu/γ-Al2O3 catalysts. Chemsuschem 7:3247–3251

    PubMed  Google Scholar 

  125. Zhu B, Wu XH, Liu WJ et al (2019) High-performance on-chip supercapacitors based on mesoporous silicon coated with ultrathin atomic layer-deposited In2O3 films. ACS Appl Mater Interfaces 11:747–752

    CAS  PubMed  Google Scholar 

  126. Yang N, Yoo JS, Schumann J et al (2017) Rh-MnO interface sites formed by atomic layer deposition promote syngas conversion to higher oxygenates. ACS Catal 7:5746–5757

    CAS  Google Scholar 

  127. Cao K, Shi L, Gong M et al (2017) Nanofence stabilized platinum nanoparticles catalyst via facet-selective atomic layer deposition. Small 13:1700648

    Google Scholar 

  128. Peng Q, Wang J, Feng ZJ et al (2017) Enhanced photoelectrochemical water oxidation by fabrication of p-LaFeO3/n-Fe2O3 heterojunction on hematite nanorods. J Phys Chem C 121:12991–12998

    CAS  Google Scholar 

  129. Onn TM, Zhang SY, Arroyo-Ramirez L et al (2015) Improved thermal stability and methane-oxidation activity of Pd/Al2O3 catalysts by atomic layer deposition of ZrO2. ACS Catal 5:5696–5701

    CAS  Google Scholar 

  130. Liu J, Meng XB, Hu YH et al (2013) Controlled synthesis of zirconium oxide on graphene nanosheets by atomic layer deposition and its growth mechanism. Carbon 52:74–82

    CAS  Google Scholar 

  131. Feng H, Elam JW, Libera JA et al (2010) Oxidative dehydrogenation of cyclohexane over alumina-supported vanadium oxide nanoliths. J Catal 269:421–431

    CAS  Google Scholar 

  132. Keranen J, Auroux A, Ek S et al (2002) Preparation, characterization and activity testing of vanadia catalysts deposited onto silica and alumina supports by atomic layer deposition. Appl Catal A 228:213–225

    CAS  Google Scholar 

  133. Herrera JE, Kwak JH, Hu JZ et al (2006) Synthesis, characterization, and catalytic function of novel highly dispersed tungsten oxide catalysts on mesoporous silica. J Catal 239:200–211

    CAS  Google Scholar 

  134. Cong W, **nyu M, Jennifer L et al (2018) A characterization study of reactive sites in ALD-synthesized WOx/ZrO2 catalysts. Catalysts 8:292

    Google Scholar 

  135. Pagan-Torres YJ, Gallo JMR, Wang D et al (2011) Synthesis of highly ordered hydrothermally stable mesoporous niobia catalysts by atomic layer deposition. ACS Catal 1:1234–1245

    CAS  Google Scholar 

  136. Ma Z, Brown S, Howe JY et al (2008) Surface modification of Au/TiO2 catalysts by SiO2 via atomic layer deposition. J Phys Chem C 112:9448–9457

    CAS  Google Scholar 

  137. Mouat AR, George C, Kobayashi T et al (2015) Highly dispersed SiOx/Al2O3 catalysts illuminate the reactivity of isolated silanol sites. Angew Chem Int Ed 54:13346–13351

    CAS  Google Scholar 

  138. Kytökivi A, Jacobs JP, Hakuli A et al (1996) Surface characteristics and activity of chromia/alumina catalysts prepared by atomic layer epitaxy. J Catal 162:190–197

    Google Scholar 

  139. Damyanov D, Mehandjiev D, Obretenoy Ts (1975) Preparation of chromium oxides on the surface of silica gel by the method of molecular deposition. Heterogeneous Catalysis, Varna, pp 191–195

    Google Scholar 

  140. Lu J, Liu B, Greeley JP et al (2012) Porous alumina protective coatings on palladium nanoparticles by self-poisoned atomic layer deposition. Chem Mater 24:2047–2055

    CAS  Google Scholar 

  141. Lu J, Liu B, Guisinger NP et al (2014) First-principles predictions and in situ experimental validation of alumina atomic layer deposition on metal surfaces. Chem Mater 26:6752–6761

    CAS  Google Scholar 

  142. Deng S, Kurttepeli M, Cott DJ, Bals S, Detavernier C (2015) Porous nanostructured metal oxides synthesized through atomic layer deposition on a carbonaceous template followed by calcination. J Mater Chem A 3:2642–2649

    CAS  Google Scholar 

  143. Liang X, Li J, Yu M, McMurray CN, Falconer JL, Weimer AW (2011) Stabilization of supported metal nanoparticles using an ultrathin porous shell. ACS Catal 1:1162–1165

    CAS  Google Scholar 

  144. Wen Y, Cai J, Zhang J et al (2018) Edge-selective growth of MCp2 (M=Fe Co, and Ni) precursors on pt nanoparticles in atomic layer deposition: a combined theoretical and experimental study. Chem Mater 31:101–111

    Google Scholar 

  145. Ray NA, Van DRP, Stair PC (2012) Synthesis strategy for protected metal nanoparticles. J Phys Chem C 116:7748–7756

    CAS  Google Scholar 

  146. Cheng N, Banis MN, Liu J et al (2015) Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv Mater 27:277–281

    CAS  PubMed  Google Scholar 

  147. Xu D, Wu BS, Ren PJ et al (2017) Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics. Catal Sci Technol 7:1342–1350

    CAS  Google Scholar 

  148. Gao Z, Qin Y (20157) Design and properties of confined nanocatalysts by atomic layer deposition. Accounts Chem Res 50:2309–2316

    Google Scholar 

  149. King DM, Spencer JA, Liang X et al (2007) Atomic layer deposition on particles using a fluidized bed reactor with in situ mass spectrometry. Surf Coat Technol 201:9163–9171

    CAS  Google Scholar 

  150. Azizpour H, Talebi M, Tichelaar FD et al (2017) Effective coating of titania nanoparticles with alumina via atomic layer deposition. Appl Surf Sci 426:480–496

    CAS  Google Scholar 

  151. Rauwel E, Nilsen O, Rauwel P et al (2012) Oxide coating of alumina nanoporous structure using ALD to produce highly porous spinel. Chem Vap Deposition 18:315–325

    CAS  Google Scholar 

  152. Soria-Hoyo C, Valverde JM, Van Ommen JR et al (2015) Synthesis of a nanosilica supported CO2 sorbent in a fluidized bed reactor. Appl Surf Sci 328:548–553

    CAS  Google Scholar 

  153. Mccormick JA, Cloutier BL, Weimer AW et al (2007) Rotary reactor for atomic layer deposition on large quantities of nanoparticles. J Vac Sci Technol, A 25:67–74

    CAS  Google Scholar 

  154. Manandhar K, Wollmershauser JA, Boercker JE et al (2016) Growth per cycle of alumina atomic layer deposition on nano- and micro-powders. J Vac Sci Technol, A 34:021519

    Google Scholar 

  155. Seong S, Jung YC, Lee T et al (2016) Fabrication of Fe3O4-ZnO core-shell nanoparticles by rotational atomic layer deposition and their multi-functional properties. Curr Appl Phys 16:1564–1570

    Google Scholar 

  156. Longrie D, Deduytsche D, Haemers J et al (2012) A rotary reactor for thermal and plasma-enhanced atomic layer deposition on powders and small objects. Surf Coat Technol 213:183–191

    CAS  Google Scholar 

  157. Duan C-L, Liu X, Shan B et al (2015) Fluidized bed coupled rotary reactor for nanoparticles coating via atomic layer deposition. Rev Sci Instrum 86:075101

    PubMed  Google Scholar 

  158. Van Ommen JR, Kooijman D, Niet MD et al (2015) Continuous production of nanostructured particles using spatial atomic layer deposition. J Vac Sci Technol, A 33(2):021513

    Google Scholar 

  159. Spencer IJA, Hall RA (2018) U.S. Patent Application No. 15/737023

    Google Scholar 

  160. Elam JW, Yanguas-gil A, Libera JA (2017) U.S. Patent Application No. 15/426789

    Google Scholar 

  161. King JS, Wittstock A, Biener J et al (2008) Ultralow loading Pt nanocatalysts prepared by atomic layer deposition on carbon aerogels. Nano Lett 8:2405–2409

    CAS  PubMed  Google Scholar 

  162. Hoang S, Lu X, Tang W et al (2019) High performance diesel oxidation catalysts using ultra-low Pt loading on titania nanowire array integrated cordierite honeycombs. Catal Today 320:2–10

    CAS  Google Scholar 

  163. Enterkin JA, Kennedy RM, Lu J et al (2013) Epitaxial stabilization of face selective catalysts. Top Catal 56:1829–1834

    CAS  Google Scholar 

  164. Zhang J, Chen C, Chen S et al (2017) Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane. Catal Sci Technol 7:322–329

    Google Scholar 

  165. Chen CS, Lin JH, You JH et al (2006) Properties of Cu(thd)2 as a precursor to prepare Cu/SiO2 catalyst using the atomic layer epitaxy technique. J Am Chem Soc 128:15950–15951

    CAS  PubMed  Google Scholar 

  166. Liu R, Lin YJ, Chou LY et al (2011) Water splitting by tungsten oxide prepared by atomic layer deposition and decorated with an oxygen-evolving catalyst. Angew Chem Int Ed 50:499–502

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank Yun Lang, Miao Gong, Jiaming Cai, Kai Qu, and Yuanting Tang for assisting the collection and organization of corresponding figures and references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, R., Shan, B., Liu, X., Cao, K. (2020). Catalysts via Atomic Layer Deposition. In: van Leeuwen, P., Claver, C. (eds) Recent Advances in Nanoparticle Catalysis. Molecular Catalysis, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-45823-2_3

Download citation

Publish with us

Policies and ethics

Navigation