Capacitor to Supercapacitor

  • Chapter
  • First Online:
Handbook of Nanocomposite Supercapacitor Materials I

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 300))

Abstract

Supercapacitors bridge the gap between conventional electrolytic capacitors and batteries. These are capacitors with electrochemical charge storage . The basic equations used to describe the capacitors are same in the case of supercapacitors but their mechanism of energy storage is different. Various electrode-active materials such as activated carbon, mesoporous carbon, carbon nanotubes , graphene, etc., are invariably used in the supercapacitors with high performance. Both aqueous and organic electrolytes are used in supercapacitors but high voltage can only be delivered by the supercapacitors manufactured with organic electrolytes. However, the cycle life of aqueous electrolyte-based supercapacitors is high when compared with the organic ones. The present and future flexible and wearable technologies necessitate the development of flexible solid-state capacitors to supply them power. Supercapacitors are found applications in a variety of fields such as electronics industry, hybrid electric vehicles , and power supplies . The two major demerits of the present supercapacitors are low energy density and high cost. Hence, novel low-cost supercapacitors should be developed with high energy density to fulfill the needs of society. The present chapter discusses the Faradaic and non-Faradaic processes, types of supercapacitors, structure—i.e., electrode, electrolyte, electrolyte membrane, and current collector —key parameters for estimation of performance, electrochemical characterizations, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 58.84
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 74.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 74.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R.B. Marichi, V. Sahu, R.K. Sharma, G. Singh, Handbook of Ecomaterials, pp 1–26

    Google Scholar 

  2. X. Zhang, L. Ji, O. Toprakci, Y. Liang, M. Alcoutlabi, Polym. Rev. 51, 239 (2011)

    Article  CAS  Google Scholar 

  3. M. Lu, F. Beguin, E. Frackowiak, in Supercapacitors: Materials, Systems, and Applications

    Google Scholar 

  4. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245 (2004)

    Article  CAS  Google Scholar 

  5. R.R. Gaddam, N.A. Kumar, R. Narayan, K.V.S.N. Raju, X.S. Zhao, in Nanomaterials Synthesis Design, Fabrication and Applications (2019), pp 385–418

    Google Scholar 

  6. H.I. Becker, (Google Patents, 1957)

    Google Scholar 

  7. D.L. Boos, (Google Patents, 1970)

    Google Scholar 

  8. https://www.kanthal.com/en/. Accessed 10 Feb 2019

  9. P.M. Biesheuvel, J.E. Dykstra, The difference between Faradaic and Nonfaradaic processes in Electrochemistry

    Google Scholar 

  10. A. Pandolfo, A. Hollenkamp, J. Power Sour. 157, 11 (2006)

    Article  CAS  Google Scholar 

  11. B.E. Conway, J. Electrochem. Soc. 138, 1539 (1991)

    Article  CAS  Google Scholar 

  12. B.E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications (Springer Science & Business Media, 2013)

    Google Scholar 

  13. K.K. Kar, S. Rana, J. Pandey, Handbook of Polymer Nanocomposites Processing, Performance and Application (Springer, 2015)

    Google Scholar 

  14. A. Burke, J. Power Sour. 91, 37 (2000)

    Article  CAS  Google Scholar 

  15. Y. Zhang, H. Feng, X. Wu, L. Wang, A. Zhang, T. **a, H. Dong, X. Li, L. Zhang, Int. J. Hydrogen Energy 34, 4889 (2009)

    Article  CAS  Google Scholar 

  16. C. Du, N. Pan, Nanotechnology 17, 5314 (2006)

    Article  CAS  Google Scholar 

  17. J. Cherusseri, K.K. Kar, RSC Adv. 5, 34335 (2015)

    Article  CAS  Google Scholar 

  18. J. Cherusseri, R. Sharma, K.K. Kar, Carbon 105, 113 (2016)

    Article  CAS  Google Scholar 

  19. J. Cherusseri, K.K. Kar, J. Mater. Chem. A 3, 21586 (2015)

    Article  CAS  Google Scholar 

  20. Y.B. Tan, J.-M. Lee, J. Mater. Chem. A 1, 14814 (2013)

    Article  CAS  Google Scholar 

  21. C. Zhong, Y. Deng, W. Hu, D. Sun, X. Han, J. Qiao, J. Zhang, in Electrolytes for Electrochemical Supercapacitors (CRC Press, 2016), p. 347

    Google Scholar 

  22. Y. Lin, H. Zhao, F. Yu, J. Yang, Sustainability 10, 3630 (2018)

    Article  CAS  Google Scholar 

  23. G. Ma, M. Dong, K. Sun, E. Feng, H. Peng, Z. Lei, J. Mater. Chem. A 3, 4035 (2015)

    Article  CAS  Google Scholar 

  24. S. Senthilkumar, R.K. Selvan, J. Melo, J. Mater. Chem. A 1, 12386 (2013)

    Article  CAS  Google Scholar 

  25. B.E. Conway, in Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications (1999), p. 698

    Google Scholar 

  26. J. Cherusseri, K.K. Kar, J. Mater. Chem. A 4, 9910 (2016)

    Article  CAS  Google Scholar 

  27. J. Cherusseri, K.K. Kar, PCCP 18, 8587 (2016)

    Article  CAS  Google Scholar 

  28. J. Cherusseri, K.K. Kar, RSC Adv. 6, 60454 (2016)

    Article  CAS  Google Scholar 

  29. E. Lim, C. Jo, J. Lee, Nanoscale 8, 7827 (2016)

    Article  CAS  Google Scholar 

  30. E. Herrero, L.J. Buller, H.D. Abruña, Chem. Rev. 101, 1897 (2001)

    Article  CAS  Google Scholar 

  31. S. Trasatti, G. Buzzanca, J. Electroanal. Chem. Interfacial Electrochem. 29, A1 (1971)

    Article  Google Scholar 

  32. B. Senthilkumar, Z. Khan, S. Park, K. Kim, H. Ko, Y. Kim, J. Mater. Chem. A 3, 21553 (2015)

    Article  CAS  Google Scholar 

  33. N. Xu, X. Sun, X. Zhang, K. Wang, Y. Ma, RSC Adv. 5, 94361 (2015)

    Article  CAS  Google Scholar 

  34. Z. Zhao, S. Hao, P. Hao, Y. Sang, A. Manivannan, N. Wu, H. Liu, J. Mater. Chem. A 3, 15049 (2015)

    Article  CAS  Google Scholar 

  35. www.inventlab.ch. Accessed 10 Feb 2019

  36. S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim, J.H. Lee, J. Mater. Chem. 22, 767 (2012)

    Article  CAS  Google Scholar 

  37. K.K. Kar, Composite Materials: Processing, Applications, Characterizations (Springer, 2016)

    Google Scholar 

  38. Z. Lu, Y. Chao, Y. Ge, J. Foroughi, Y. Zhao, C. Wang, H. Long, G.G. Wallace, Nanoscale 9, 5063 (2017)

    Article  CAS  Google Scholar 

  39. L. Jiang, L. Sheng, X. Chen, T. Wei, Z. Fan, J. Mater. Chem. A 4, 11388 (2016)

    Article  CAS  Google Scholar 

  40. S.R. Ede, S. Anantharaj, K. Kumaran, S. Mishra, S. Kundu, RSC Adv. 7, 5898 (2017)

    Article  CAS  Google Scholar 

  41. P.H. Jampani, O. Velikokhatnyi, K. Kadakia, D.H. Hong, S.S. Damle, J.A. Poston, A. Manivannan, P.N. Kumta, J. Mater. Chem. A 3, 8413 (2015)

    Article  CAS  Google Scholar 

  42. L. Li, R. Li, S. Gai, F. He, P. Yang, J. Mater. Chem. A 2, 8758 (2014)

    Article  CAS  Google Scholar 

  43. D.-Q. Liu, S.-H. Yu, S.-W. Son, S.-K. Joo, ECS Trans. 16, 103 (2008)

    Article  CAS  Google Scholar 

  44. R. Liu, J. Duay, T. Lane, S.B. Lee, PCCP 12, 4309 (2010)

    Article  CAS  Google Scholar 

  45. M. Huang, F. Li, F. Dong, Y.X. Zhang, L.L. Zhang, J. Mater. Chem. A 3, 21380 (2015)

    Article  CAS  Google Scholar 

  46. M. Qorbani, T.-C. Chou, Y.-H. Lee, S. Samireddi, N. Naseri, A. Ganguly, A. Esfandiar, C.-H. Wang, L.-C. Chen, K.-H. Chen, J. Mater. Chem. A 5, 12569 (2017)

    Article  CAS  Google Scholar 

  47. L.M. Santino, S. Acharya, J.M. D’Arcy, J. Mater. Chem. A 5, 11772 (2017)

    Article  CAS  Google Scholar 

  48. L. Yuan, B. Yao, B. Hu, K. Huo, W. Chen, J. Zhou, Energy Environ. Sci. 6, 470 (2013)

    Article  CAS  Google Scholar 

  49. C.O. Baker, X. Huang, W. Nelson, R.B. Kaner, Chem. Soc. Rev. 46, 1510 (2017)

    Article  CAS  Google Scholar 

  50. M. Umashankar, S. Palaniappan, RSC Adv. 5, 70675 (2015)

    Article  CAS  Google Scholar 

  51. M. Rajesh, C.J. Raj, B.C. Kim, R. Manikandan, S.-J. Kim, S.Y. Park, K. Lee, K.H. Yu, RSC Adv. 6, 110433 (2016)

    Article  CAS  Google Scholar 

  52. Z. Su, C. Yang, C. Xu, H. Wu, Z. Zhang, T. Liu, C. Zhang, Q. Yang, B. Li, F. Kang, J. Mater. Chem. A 1, 12432 (2013)

    Article  CAS  Google Scholar 

  53. R. Ramya, R. Sivasubramanian, M. Sangaranarayanan, Electrochim. Acta 101, 109 (2013)

    Article  CAS  Google Scholar 

  54. M. Deschamps, E. Gilbert, P. Azais, E. Raymundo-Piñero, M.R. Ammar, P. Simon, D. Massiot, F. Béguin, Nat. Mater. 12, 351 (2013)

    Article  CAS  Google Scholar 

  55. C. Zhong, Y. Deng, W. Hu, J. Qiao, L. Zhang, J. Zhang, Chem. Soc. Rev. 44, 7484 (2015)

    Article  CAS  Google Scholar 

  56. S. Hashmi, R. Latham, R. Linford, W. Schlindwein, Polym. Int. 47, 28 (1998)

    Article  CAS  Google Scholar 

  57. X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, Y. Chen, Adv. Funct. Mater. 23, 3353 (2013)

    Article  CAS  Google Scholar 

  58. H. Yu, J. Wu, L. Fan, Y. Lin, K. Xu, Z. Tang, C. Cheng, S. Tang, J. Lin, M. Huang, J. Power Sour. 198, 402 (2012)

    Article  CAS  Google Scholar 

  59. M. Armand, F. Endres, D.R. MacFarlane, H. Ohno, B. Scrosati, in Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, 2011), p. 129

    Google Scholar 

  60. Y.J. Kang, H. Chung, C.-H. Han, W. Kim, Nanotechnology 23, 065401 (2012)

    Article  CAS  Google Scholar 

  61. H. Dai, H. Zhang, H. Zhong, H. **, X. Li, S. **ao, Z. Mai, Fuel Cells 10, 754 (2010)

    Article  CAS  Google Scholar 

  62. Z. Mahmud, N. Zaki, R. Subban, A. Ali, M. Yahya, in 2012 IEEE Colloquium on Humanities, Science and Engineering (CHUSER) (IEEE, 2012), p. 621

    Google Scholar 

  63. M. Rosi, M. P. Ekaputra, M. Abdullah, Khairurrijal, in AIP Conference Proceedings (AIP, 2010), p. 55

    Google Scholar 

  64. S. Banerjee, K.K. Kar, Recent Pat. Mater. Sci. 7, 131 (2014)

    Article  CAS  Google Scholar 

  65. S. Banerjee, K.K. Kar, M.K. Das, Recent Pat. Mater. Sci. 7, 173 (2014)

    Article  CAS  Google Scholar 

  66. I. Shown, A. Ganguly, L.-C. Chen, K.-H. Chen, Energy Sci. Eng. 3, 2 (2015)

    Article  CAS  Google Scholar 

  67. P. Taberna, P. Simon, J.-F. Fauvarque, J. Electrochem. Soc. 150, A292 (2003)

    Article  CAS  Google Scholar 

  68. G.-Q. Zhang, Y.-Q. Zhao, F. Tao, H.-L. Li, J. Power Sour. 161, 723 (2006)

    Article  CAS  Google Scholar 

  69. S. Zhang, N. Pan, Adv. Energy Mater. 5, 1401401 (2015)

    Article  CAS  Google Scholar 

  70. Y.S. Lim, H.N. Lim, S.P. Lim, N.M. Huang, RSC Adv. 4, 56445 (2014)

    Article  CAS  Google Scholar 

  71. A. Singh, A.J. Roberts, R.C. Slade, A. Chandra, J. Mater. Chem. A 2, 16723 (2014)

    Article  CAS  Google Scholar 

  72. D. Singh, K. Shahi, K.K. Kar, Solid State Ionics 287, 89 (2016)

    Article  CAS  Google Scholar 

  73. K.H. An, K.K. Jeon, J.K. Heo, S.C. Lim, D.J. Bae, Y.H. Lee, J. Electrochem. Soc. 149, A1058 (2002)

    Article  CAS  Google Scholar 

  74. Q. Wang, Z. Wen, J. Li, Adv. Funct. Mater. 16, 2141 (2006)

    Article  CAS  Google Scholar 

  75. H. Li, J. Wang, Q. Chu, Z. Wang, F. Zhang, S. Wang, J. Power Sour. 190, 578 (2009)

    Article  CAS  Google Scholar 

  76. D.P. Singh, K. Shahi, K.K. Kar, Solid State Ionics 231, 102 (2013)

    Article  CAS  Google Scholar 

  77. B. De, T. Kuila, N.H. Kim, J.H. Lee, Carbon 122, 247 (2017)

    Article  CAS  Google Scholar 

  78. X. **ang, W. Zhang, Z. Yang, Y. Zhang, H. Zhang, H. Zhang, H. Guo, X. Zhang, Q. Li, RSC Adv. 6, 24946 (2016)

    Article  CAS  Google Scholar 

  79. D. Li, Y. Li, Y. Feng, W. Hu, W. Feng, J. Mater. Chem. A 3, 2135 (2015)

    Article  CAS  Google Scholar 

  80. W.-W. Liu, X.-B. Yan, J.-W. Lang, C. Peng, Q.-J. Xue, J. Mater. Chem. 22, 17245 (2012)

    Article  CAS  Google Scholar 

  81. Autolab Application Note EC08 Basic overview of the working principle of a potentiostat/galvanostat (PGSTAT)—Electrochemical cell setup https://www.ecochemie.nl/download/Applicationnotes/Autolab_Application_Note_EC08.pdf. Accessed 22 Nov 2019

  82. Two, Three and Four Electrode Experiments. https://www.gamry.com/application-notes/instrumentation/two-three-and-four-electrode-experiments/. Accessed 22 Nov 2019

  83. Potentiostat. https://www3.nd.edu/~kamatlab/documents/facilities/potentiostat.pdf. Accessed 22 Nov 2019

  84. R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda, Prog. Energy Combust. Sci. 75, 100786 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by Department of Science and Technology, India (DST/TMD/MES/2K16/37(G)) for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Banerjee, S. et al. (2020). Capacitor to Supercapacitor. In: Kar, K. (eds) Handbook of Nanocomposite Supercapacitor Materials I. Springer Series in Materials Science, vol 300. Springer, Cham. https://doi.org/10.1007/978-3-030-43009-2_2

Download citation

Publish with us

Policies and ethics

Navigation