Pediatric Cardiac Computed Tomography

  • Living reference work entry
  • First Online:
Pediatric Cardiology

Abstract

Advances in both technology and adoption in recent years make cardiac computerized tomography (CT) a vital and indispensable tool for the cardiologist caring for patients with congenital heart disease (CHD). Current state-of-the-art CT scanners allow for the rapid diagnosis of complex anatomy via CT at radiation doses that are a fraction of the previous technology. The role of CT has greatly expanded and proven to be a powerful diagnostic and decision-making tool for the cardiologist, interventionalist, and surgeon in the care of increasingly complex patients. Despite these advances, the future role of CT is likely to continue to expand beyond diagnostic imaging to involve a more integrated approach with surgical and interventional planning in the coming years. The ability to perform accurate and diagnostic scans requires the direction of experienced cardiologists and radiologists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun R, Liu M, Lu L, Zheng Y, Zhang P. Congenital heart disease: causes, diagnosis, symptoms, and treatments. Cell Biochem Biophys. 2015;72(3):857–60.

    Article  CAS  PubMed  Google Scholar 

  2. Gilboa SM, Devine OJ, Kucik JE, Oster ME, Riehle-Colarusso T, Nembhard WN, et al. Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010. Circulation. 2016;134(2):101–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol. 2010;56(14):1149–57.

    Article  PubMed  Google Scholar 

  4. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, et al. ACC/AHA 2008 guidelines for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Writing Committee to develop guidelines on the management of adults with congenital heart disease). Developed in Collaboration with the American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am College Cardiol. 2008;52(23):e143–263.

    Article  Google Scholar 

  5. Prakash A, Powell AJ, Geva T. Multimodality noninvasive imaging for assessment of congenital heart disease. Circ Cardiovasc Imaging. 2010;3(1):112–25.

    Article  PubMed  Google Scholar 

  6. Han BK, Rigsby CK, Hlavacek A, Leipsic J, Nicol ED, Siegel MJ, et al. Computed tomography imaging in patients with congenital heart disease part I: rationale and utility. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):475–92.

    Article  PubMed  Google Scholar 

  7. Han BK, Rigsby CK, Leipsic J, Bardo D, Abbara S, Ghoshhajra B, et al. Computed tomography imaging in patients with congenital heart disease, part 2: technical recommendations. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT): endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9(6):493–513.

    Article  PubMed  Google Scholar 

  8. Sachdeva R, Valente AM, Armstrong AK, Cook SC, Han BK, Lopez L, et al. ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/SOPE 2020 appropriate use criteria for multimodality imaging during the follow-up care of patients with Congenital Heart Disease: a report of the American College of Cardiology Solution Set Oversight Committee and appropriate use Criteria Task Force, American Heart Association, American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Pediatric Echocardiography. J Am Coll Cardiol. 2020;75(6):657–703.

    Article  PubMed  Google Scholar 

  9. Tsai IC, Chen MC, Jan SL, Wang CC, Fu YC, Lin PC, et al. Neonatal cardiac multidetector row CT: why and how we do it. Pediatr Radiol. 2008;38(4):438–51.

    Article  PubMed  Google Scholar 

  10. Writing G, Sachdeva R, Valente AM, Armstrong AK, Cook SC, Han BK, et al. ACC/AHA/ASE/HRS/ISACHD/SCAI/SCCT/SCMR/SOPE 2020 appropriate use criteria for multimodality imaging during the follow-up care of patients with Congenital Heart Disease: a report of the American College of Cardiology Solution set Oversight Committee and appropriate use Criteria Task Force, American Heart Association, American Society of Echocardiography, Heart Rhythm Society, International Society for Adult Congenital Heart Disease, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Pediatric Echocardiography. J Am Soc Echocardiogr. 2020;33(10):e1–e48.

    Article  Google Scholar 

  11. Bean MJ, Pannu H, Fishman EK. Three-dimensional computed tomographic imaging of complex congenital cardiovascular abnormalities. J Comput Assist Tomogr. 2005;29(6):721–4.

    Article  PubMed  Google Scholar 

  12. Crean A. Cardiovascular MR and CT in congenital heart disease. Heart. 2007;93(12):1637–47.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Carr JJ, Hendel RC, White RD, Patel MR, Wolk MJ, Bettmann MA, et al. 2013 appropriate utilization of cardiovascular imaging: a methodology for the development of joint criteria for the appropriate utilization of cardiovascular imaging by the American College of Cardiology Foundation and American College of Radiology. J Am Coll Radiol. 2013;10(6):456–63.

    Article  PubMed  Google Scholar 

  14. Marino B, Corno A, Carotti A, Pasquini L, Giannico S, Guccione P, et al. Pediatric cardiac surgery guided by echocardiography. Established indications and new trends. Scand J Thorac Cardiovasc Surg. 1990;24(3):197–201.

    Article  CAS  PubMed  Google Scholar 

  15. Tworetzky W, McElhinney DB, Brook MM, Reddy VM, Hanley FL, Silverman NH. Echocardiographic diagnosis alone for the complete repair of major congenital heart defects. J Am Coll Cardiol. 1999;33(1):228–33.

    Article  CAS  PubMed  Google Scholar 

  16. Siripornpitak S, Pornkul R, Khowsathit P, Layangool T, Promphan W, Pongpanich B. Cardiac CT angiography in children with congenital heart disease. Eur J Radiol. 2013;82(7):1067–82.

    Article  PubMed  Google Scholar 

  17. Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD. Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J. 2010;31(7):794–805.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Margossian R, Schwartz ML, Prakash A, Wruck L, Colan SD, Atz AM, et al. Comparison of echocardiographic and cardiac magnetic resonance imaging measurements of functional single ventricular volumes, mass, and ejection fraction (from the pediatric heart network Fontan cross-sectional study). Am J Cardiol. 2009;104(3):419–28.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Powell AJ, Maier SE, Chung T, Geva T. Phase-velocity cine magnetic resonance imaging measurement of pulsatile blood flow in children and young adults: in vitro and in vivo validation. Pediatr Cardiol. 2000;21(2):104–10.

    Article  CAS  PubMed  Google Scholar 

  20. Doherty JU, Kort S, Mehran R, Schoenhagen P, Soman P, Dehmer GJ, et al. ACC/AATS/AHA/ASE/ASNC/HRS/SCAI/SCCT/SCMR/STS 2019 appropriate use criteria for multimodality imaging in the assessment of cardiac structure and function in nonvalvular heart disease: a report of the American College of Cardiology Appropriate use Criteria Task Force, American Association for Thoracic Surgery, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and the Society of Thoracic Surgeons. J Am Coll Cardiol. 2019;73(4):488–516.

    Article  PubMed  Google Scholar 

  21. Leiner T, Bogaert J, Friedrich MG, Mohiaddin R, Muthurangu V, Myerson S, et al. SCMR position paper (2020) on clinical indications for cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2020;22(1):76.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Taylor AM. Cardiac imaging: MR or CT? Which to use when. Pediatr Radiol. 2008;38(Suppl 3):S433–8.

    Article  PubMed  Google Scholar 

  23. Tsai-Goodman B, Geva T, Odegard KC, Sena LM, Powell AJ. Clinical role, accuracy, and technical aspects of cardiovascular magnetic resonance imaging in infants. Am J Cardiol. 2004;94(1):69–74.

    Article  PubMed  Google Scholar 

  24. Han BK, Lindberg J, Overman D, Schwartz RS, Grant K, Lesser JR. Safety and accuracy of dual-source coronary computed tomography angiography in the pediatric population. J Cardiovasc Comput Tomogr. 2012;6(4):252–9.

    Article  PubMed  Google Scholar 

  25. Achenbach S, Barkhausen J, Beer M, Beerbaum P, Dill T, Eichhorn J, et al. Consensus recommendations of the German radiology society (DRG), the German cardiac society (DGK) and the German Society for Pediatric Cardiology (DGPK) on the use of cardiac imaging with computed tomography and magnetic resonance imaging. Rofo. 2012;184(4):345–68.

    CAS  PubMed  Google Scholar 

  26. Bierhals AJ, Rossini S, Woodard PK, Javidan-Nejad C, Billadello JJ, Bhalla S, et al. Segmental analysis of congenital heart disease: putting the “puzzle” together with computed tomography. Int J Cardiovasc Imaging. 2014;30(6):1161–72.

    Article  PubMed  Google Scholar 

  27. Goo HW. Cardiac MDCT in children: CT technology overview and interpretation. Radiol Clin N Am. 2011;49(5):997–1010.

    Article  PubMed  Google Scholar 

  28. Ihlenburg S, Rompel O, Rueffer A, Purbojo A, Cesnjevar R, Dittrich S, et al. Dual source computed tomography in patients with congenital heart disease. Thorac Cardiovasc Surg. 2014;62(3):203–10.

    PubMed  Google Scholar 

  29. Dillman JR, Hernandez RJ. Role of CT in the evaluation of congenital cardiovascular disease in children. AJR Am J Roentgenol. 2009;192(5):1219–31.

    Article  PubMed  Google Scholar 

  30. Goo HW, Seo DM, Yun TJ, Park JJ, Park IS, Ko JK, et al. Coronary artery anomalies and clinically important anatomy in patients with congenital heart disease: multislice CT findings. Pediatr Radiol. 2009;39(3):265–73.

    Article  PubMed  Google Scholar 

  31. Arnold R, Ley S, Ley-Zaporozhan J, Eichhorn J, Schenk JP, Ulmer H, et al. Visualization of coronary arteries in patients after childhood Kawasaki syndrome: value of multidetector CT and MR imaging in comparison to conventional coronary catheterization. Pediatr Radiol. 2007;37(10):998–1006.

    Article  PubMed  Google Scholar 

  32. Tsai IC, Lee T, Chen MC, Fu YC, Jan SL, Wang CC, et al. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique. Pediatr Radiol. 2007;37(8):818–25.

    Article  PubMed  Google Scholar 

  33. Lee T, Tsai IC, Fu YC, Jan SL, Wang CC, Chang Y, et al. Using multidetector-row CT in neonates with complex congenital heart disease to replace diagnostic cardiac catheterization for anatomical investigation: initial experiences in technical and clinical feasibility. Pediatr Radiol. 2006;36(12):1273–82.

    Article  PubMed  Google Scholar 

  34. Al-Mousily F, Shifrin RY, Fricker FJ, Feranec N, Quinn NS, Chandran A. Use of 320-detector computed tomographic angiography for infants and young children with congenital heart disease. Pediatr Cardiol. 2011;32(4):426–32.

    Article  PubMed  Google Scholar 

  35. Krishnamurthy R. Neonatal cardiac imaging. Pediatr Radiol. 2010;40(4):518–27.

    Article  PubMed  Google Scholar 

  36. Cohen MD. ALARA, image gently and CT-induced cancer. Pediatr Radiol. 2015;45(4):465–70.

    Article  PubMed  Google Scholar 

  37. Hill KD, Frush DP, Han BK, Abbott BG, Armstrong AK, DeKemp RA, et al. Radiation safety in children with congenital and acquired heart disease: a scientific position statement on multimodality dose optimization from the image gently Alliance. J Am Coll Cardiol Img. 2017;10(7):797–818.

    Article  Google Scholar 

  38. Mathews JD, Forsythe AV, Brady Z, Butler MW, Goergen SK, Byrnes GB, et al. Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ. 2013;346:f2360.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Siegel JA, Pennington CW, Sacks B. Subjecting radiologic imaging to the linear no-threshold hypothesis: a non sequitur of non-trivial proportion. J Nucl Med. 2017;58(1):1–6.

    Article  PubMed  Google Scholar 

  40. Lesser AM, Newell MC, Samara MA, Gornick C, Grant K, Garberich R, et al. Radiation dose and image quality of 70 kVp functional cardiovascular computed tomography imaging in congenital heart disease. J Cardiovasc Comput Tomogr. 2016;10(2):173–8.

    Article  PubMed  Google Scholar 

  41. Siegel MJ, Hildebolt C, Bradley D. Effects of automated kilovoltage selection technology on contrast-enhanced pediatric CT and CT angiography. Radiology. 2013;268(2):538–47.

    Article  PubMed  Google Scholar 

  42. Li J, Udayasankar UK, Toth TL, Seamans J, Small WC, Kalra MK. Automatic patient centering for MDCT: effect on radiation dose. AJR Am J Roentgenol. 2007;188(2):547–52.

    Article  PubMed  Google Scholar 

  43. Prabhu SP, Mahmood S, Sena L, Lee EY. MDCT evaluation of pulmonary embolism in children and young adults following a lateral tunnel Fontan procedure: optimizing contrast-enhancement techniques. Pediatr Radiol. 2009;39(9):938–44.

    Article  PubMed  Google Scholar 

  44. Campbell RM, Douglas PS, Eidem BW, Lai WW, Lopez L, Sachdeva R. ACC/AAP/AHA/ASE/HRS/SCAI/SCCT/SCMR/SOPE 2014 appropriate use criteria for initial transthoracic echocardiography in outpatient pediatric cardiology: a report of the American College of Cardiology Appropriate use Criteria Task Force, American Academy of Pediatrics, American Heart Association, American Society of Echocardiography, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Pediatric Echocardiography. J Am Coll Cardiol. 2014;64(19):2039–60.

    Article  PubMed  Google Scholar 

  45. Puchalski MD, Lui GK, Miller-Hance WC, Brook MM, Young LT, Bhat A, et al. Guidelines for performing a comprehensive transesophageal echocardiographic: examination in children and all patients with congenital heart disease: recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr. 2019;32(2):173–215.

    Article  PubMed  Google Scholar 

  46. Stephens EH, Monge MC, Eltayeb O, Patel A, Webster G, Cornicelli MD, et al. Evolution and current results of a unified strategy for sinus Venosus surgery. Ann Thorac Surg. 2021;111(3):980–986.

    Google Scholar 

  47. Bonelli-Sica JM, de la Mora-Cervantes R, Diaz-Zamudio M, Castillo-Castellon F, Ramirez-Carmona R, Velazquez-Moreno J, et al. Dual-source 256-MDCT for diagnosis of anomalous pulmonary venous drainage in pediatric population. AJR Am J Roentgenol. 2013;200(2):W163–9.

    Article  PubMed  Google Scholar 

  48. Cinar A, Haliloglu M, Karagoz T, Karcaaltincaba M, Celiker A, Tekinalp G. Interrupted aortic arch in a neonate: multidetector CT diagnosis. Pediatr Radiol. 2004;34(11):901–3.

    Article  PubMed  Google Scholar 

  49. Fitzgerald SW, Donaldson JS, Poznanski AK. Pediatric thoracic aorta: normal measurements determined with CT. Radiology. 1987;165(3):667–9.

    Article  CAS  PubMed  Google Scholar 

  50. Becker C, Soppa C, Fink U, Haubner M, Muller-Lisse U, Englmeier KH, et al. Spiral CT angiography and 3D reconstruction in patients with aortic coarctation. Eur Radiol. 1997;7(9):1473–7.

    Article  CAS  PubMed  Google Scholar 

  51. Kutty S, Greenberg RK, Fletcher S, Svensson LG, Latson LA. Endovascular stent grafts for large thoracic aneurysms after coarctation repair. Ann Thorac Surg. 2008;85(4):1332–8.

    Article  PubMed  Google Scholar 

  52. Nietlispach F, Leipsic J, Wijesinghe N, Webb JG, Carere RG. First-in-man use of a tapered endovascular stent graft for treatment of aneurysm after coarctation repair. Catheter Cardiovasc Interv. 2010;76(7):1035–40.

    Article  PubMed  Google Scholar 

  53. Eichhorn JG, Long FR, Jourdan C, Heverhagen JT, Hill SL, Raman SV, et al. Usefulness of multidetector CT imaging to assess vascular stents in children with congenital heart disease: an in vivo and in vitro study. Catheter Cardiovasc Interv. 2008;72(4):544–51.

    Article  PubMed  Google Scholar 

  54. Jhang WK, Park JJ, Seo DM, Goo HW, Gwak M. Perioperative evaluation of airways in patients with arch obstruction and intracardiac defects. Ann Thorac Surg. 2008;85(5):1753–8.

    Article  PubMed  Google Scholar 

  55. Hernanz-Schulman M. Vascular rings: a practical approach to imaging diagnosis. Pediatr Radiol. 2005;35(10):961–79.

    Article  PubMed  Google Scholar 

  56. Cohen MS, Eidem BW, Cetta F, Fogel MA, Frommelt PC, Ganame J, et al. Multimodality imaging guidelines of patients with transposition of the great arteries: a report from the American Society of Echocardiography developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr. 2016;29(7):571–621.

    Article  PubMed  Google Scholar 

  57. Westra SJ, Hill JA, Alejos JC, Galindo A, Boechat MI, Laks H. Three-dimensional helical CT of pulmonary arteries in infants and children with congenital heart disease. AJR Am J Roentgenol. 1999;173(1):109–15.

    Article  CAS  PubMed  Google Scholar 

  58. Hayabuchi Y, Inoue M, Watanabe N, Sakata M, Nabo MM, Kitagawa T, et al. Assessment of systemic-pulmonary collateral arteries in children with cyanotic congenital heart disease using multidetector-row computed tomography: comparison with conventional angiography. Int J Cardiol. 2010;138(3):266–71.

    Article  PubMed  Google Scholar 

  59. Maeda E, Akahane M, Kato N, Hayashi N, Koga H, Yamada H, et al. Assessment of major aortopulmonary collateral arteries with multidetector-row computed tomography. Radiat Med. 2006;24(5):378–83.

    Article  PubMed  Google Scholar 

  60. Abbara S, Blanke P, Maroules CD, Cheezum M, Choi AD, Han BK, et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the society of cardiovascular computed tomography guidelines committee: endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr. 2016;10(6):435–49.

    Article  PubMed  Google Scholar 

  61. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.

    Article  PubMed  Google Scholar 

  62. Schmitt R, Froehner S, Brunn J, Wagner M, Brunner H, Cherevatyy O, et al. Congenital anomalies of the coronary arteries: imaging with contrast-enhanced, multidetector computed tomography. Eur Radiol. 2005;15(6):1110–21.

    Article  PubMed  Google Scholar 

  63. Rigsby CK, deFreitas RA, Nicholas AC, Leidecker C, Johanek AJ, Anley P, et al. Safety and efficacy of a drug regimen to control heart rate during 64-slice ECG-gated coronary CTA in children. Pediatr Radiol. 2010;40(12):1880–9.

    Article  PubMed  Google Scholar 

  64. Pache G, Grohmann J, Bulla S, Arnold R, Stiller B, Schlensak C, et al. Prospective electrocardiography-triggered CT angiography of the great thoracic vessels in infants and toddlers with congenital heart disease: feasibility and image quality. Eur J Radiol. 2011;80(3):e440–5.

    Article  PubMed  Google Scholar 

  65. Leipsic J, LaBounty TM, Ajlan AM, Earls JP, Strovski E, Madden M, et al. A prospective randomized trial comparing image quality, study interpretability, and radiation dose of narrow acquisition window with widened acquisition window protocols in prospectively ECG-triggered coronary computed tomography angiography. J Cardiovasc Comput Tomogr. 2013;7(1):18–24.

    Article  PubMed  Google Scholar 

  66. Zhang W, Bogale S, Golriz F, Krishnamurthy R. Relationship between heart rate and quiescent interval of the cardiac cycle in children using MRI. Pediatr Radiol. 2017;47(12):1588–93.

    Article  PubMed  Google Scholar 

  67. Hoashi T, Kagisaki K, Oda T, Kitano M, Kurosaki K, Shiraishi I, et al. Long-term results of treatments for functional single ventricle associated with extracardiac type total anomalous pulmonary venous connection. Eur J Cardiothorac Surg. 2013;43(5):965–70.

    Article  PubMed  Google Scholar 

  68. Kelle AM, Backer CL, Gossett JG, Kaushal S, Mavroudis C. Total anomalous pulmonary venous connection: results of surgical repair of 100 patients at a single institution. J Thorac Cardiovasc Surg. 2010;139(6):1387–94 e3.

    Article  PubMed  Google Scholar 

  69. Wolla CD, Hlavacek AM, Schoepf UJ, Bucher AM, Chowdhury S. Cardiovascular manifestations of heterotaxy and related situs abnormalities assessed with CT angiography. J Cardiovasc Comput Tomogr. 2013;7(6):408–16.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Koc Z, Oguzkurt L. Interruption or congenital stenosis of the inferior vena cava: prevalence, imaging, and clinical findings. Eur J Radiol. 2007;62(2):257–66.

    Article  PubMed  Google Scholar 

  71. Alwi M, Mood MC. Stenting of lesions in patent ductus arteriosus with duct-dependent pulmonary blood flow: focus on case selection, techniques and outcome. Interv Cardiol Clin. 2013;2(1):93–113.

    PubMed  Google Scholar 

  72. Chamberlain RC, Ezekian JE, Sturgeon GM, Barker PCA, Hill KD, Fleming GA. Preprocedural three-dimensional planning aids in transcatheter ductal stent placement: a single-center experience. Catheter Cardiovasc Interv. 2020;95(6):1141–8.

    Article  PubMed  Google Scholar 

  73. Rehman R, Marhisham MC, Alwi M. Stenting the complex patent ductus arteriosus in tetralogy of Fallot with pulmonary atresia: challenges and outcomes. Futur Cardiol. 2018;14(1):55–73.

    Article  CAS  Google Scholar 

  74. Han BK, Vezmar M, Lesser JR, Michalak G, Grant K, Dassenko D, et al. Selective use of cardiac computed tomography angiography: an alternative diagnostic modality before second-stage single ventricle palliation. J Thorac Cardiovasc Surg. 2014;148(4):1548–54.

    Article  PubMed  Google Scholar 

  75. Choi BW, Park YH, Lee JK, Kim DJ, Kim MJ, Choe KO. Patency of cavopulmonary connection studied by single phase electron beam computed tomography. Int J Cardiovasc Imaging. 2003;19(5):447–55.

    Article  PubMed  Google Scholar 

  76. Ji X, Zhao B, Cheng Z, Si B, Wang Z, Duan Y, et al. Low-dose prospectively electrocardiogram-gated axial dual-source CT angiography in patients with pulsatile bilateral bidirectional Glenn Shunt: an alternative noninvasive method for postoperative morphological estimation. PLoS One. 2014;9(4):e94425.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Grewal J, Al Hussein M, Feldstein J, Kiess M, Ellis J, Human D, et al. Evaluation of silent thrombus after the Fontan operation. Congenit Heart Dis. 2013;8(1):40–7.

    Article  PubMed  Google Scholar 

  78. Park EA, Lee W, Chung SY, Yin YH, Chung JW, Park JH. Optimal scan timing and intravenous route for contrast-enhanced computed tomography in patients after Fontan operation. J Comput Assist Tomogr. 2010;34(1):75–81.

    Article  PubMed  Google Scholar 

  79. Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(5):465–95; quiz 576–7.

    Article  PubMed  Google Scholar 

  80. Longmore DB, Klipstein RH, Underwood SR, Firmin DN, Hounsfield GN, Watanabe M, et al. Dimensional accuracy of magnetic resonance in studies of the heart. Lancet. 1985;1(8442):1360–2.

    Article  CAS  PubMed  Google Scholar 

  81. Semelka RC, Tomei E, Wagner S, Mayo J, Caputo G, O’Sullivan M, et al. Interstudy reproducibility of dimensional and functional measurements between cine magnetic resonance studies in the morphologically abnormal left ventricle. Am Heart J. 1990;119(6):1367–73.

    Article  CAS  PubMed  Google Scholar 

  82. Brown DW, Gauvreau K, Powell AJ, Lang P, Colan SD, Del Nido PJ, et al. Cardiac magnetic resonance versus routine cardiac catheterization before bidirectional glenn anastomosis in infants with functional single ventricle: a prospective randomized trial. Circulation. 2007;116(23):2718–25.

    Article  PubMed  Google Scholar 

  83. Busch S, Johnson TR, Wintersperger BJ, Minaifar N, Bhargava A, Rist C, et al. Quantitative assessment of left ventricular function with dual-source CT in comparison to cardiac magnetic resonance imaging: initial findings. Eur Radiol. 2008;18(3):570–5.

    Article  CAS  PubMed  Google Scholar 

  84. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J. 2006;151(3):736–44.

    Article  PubMed  Google Scholar 

  85. Rizvi A, Deano RC, Bachman DP, **ong G, Min JK, Truong QA. Analysis of ventricular function by CT. J Cardiovasc Comput Tomogr. 2015;9(1):1–12.

    Article  PubMed  Google Scholar 

  86. Yamamuro M, Tadamura E, Kubo S, Toyoda H, Nishina T, Ohba M, et al. Cardiac functional analysis with multi-detector row CT and segmental reconstruction algorithm: comparison with echocardiography, SPECT, and MR imaging. Radiology. 2005;234(2):381–90.

    Article  PubMed  Google Scholar 

  87. Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ. Radiation dose to patients from cardiac diagnostic imaging. Circulation. 2007;116(11):1290–305.

    Article  PubMed  Google Scholar 

  88. Halliburton SS, Abbara S, Chen MY, Gentry R, Mahesh M, Raff GL, et al. SCCT guidelines on radiation dose and dose-optimization strategies in cardiovascular CT. J Cardiovasc Comput Tomogr. 2011;5(4):198–224.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Hirshfeld JW Jr, Ferrari VA, Bengel FM, Bergersen L, Chambers CE, Einstein AJ, et al. 2018 ACC/HRS/NASCI/SCAI/SCCT expert consensus document on optimal use of ionizing radiation in cardiovascular imaging-best practices for safety and effectiveness, part 2: radiological equipment operation, dose-sparing methodologies, patient and medical personnel protection: a report of the American College of Cardiology Task Force on expert consensus decision pathways. J Am Coll Cardiol. 2018;71(24):2829–55.

    Article  PubMed  Google Scholar 

  90. Han BK, Casey S, Witt D, Leipsic J, Crean A, Nicol E, et al. Development of a congenital cardiovascular computed tomography imaging registry: rationale and implementation. J Cardiovasc Comput Tomogr. 2018;12(3):263–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Cornicelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Cornicelli, M., Guerra, V., Popescu, A. (2023). Pediatric Cardiac Computed Tomography. In: Abdulla, Ri., et al. Pediatric Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-42937-9_35-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42937-9_35-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42937-9

  • Online ISBN: 978-3-030-42937-9

  • eBook Packages: Springer Reference MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation