Mitochondrial Function in Aging

  • Chapter
  • First Online:
Clinical Genetics and Genomics of Aging

Abstract

The literature refers to the mitochondrion as the powerhouse of the cell, since this organelle is the primary source of energy production in the eukaryotic cells. However, mitochondria are not simple machines that produce energy. For instance, recent studies have proposed that mitochondria are a significant hub among several signaling pathways that regulate survival, immunity, and proteostasis that are also strongly associated with aging. Therefore, the study of mitochondrial function, which involves metabolism, distribution within the cell, and dynamics (fission, fusion, and mitophagy), has become relevant in the aging field. Moreover, the mitochondria are also the principal producers of reactive oxygen species, so mitochondrial dysfunction is an important hallmark of aging. In this chapter, we will analyze the role of mitochondrial dynamics and metabolism that, upon failure, lead to the organelle dysfunction, and their relationship with the aging process and age-related diseases. Finally, we will describe a few examples of treatments that have been used in order to target mitochondria and restore mitochondrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

∆Ψm:

Mitochondrial membrane potential

AD:

Alzheimer’s disease

ATP:

Adenosine triphosphate

BMI:

Body mass index

DRP1:

Dynamin-related protein 1

ETC:

Electron transport chain

FA:

Fatty acids

FAO:

Fatty acid oxidation

Fis1:

Mitochondrial fission protein 1

IMM:

Inner mitochondrial membrane

MFF:

Mitochondrial fission factor

MiD:

Mitochondrial division factors

MPTP:

Mitochondrial permeability transition pore

MRC:

Mitochondrial respiratory chain

mtDNA:

Mitochondrial deoxyribonucleic acid

mtUPR:

Mitochondrial unfolded protein response

NRF2:

Nuclear respiratory factor 2

OMM:

Outer mitochondrial membrane

OxPhos:

Oxidative phosphorylation

PARL:

Presenilin-associated rhomboid-like

PD:

Parkinson’s disease

PGC-1α :

Peroxisome proliferator-activated receptor γ

Pol-ˠ:

Polymerase gamma

PUFAs:

Polyunsaturated fatty acids

RNA:

Ribonucleic acid

ROS:

Reactive oxygen species

TCA:

Tricarboxylic acid cycle

TFAM:

Mitochondrial transcription factor A

References

  1. Suzman R, Beard JR, Boerma T, Chatterji S. Health in an ageing world – what do we know? Lancet. 2015;385:484–6.

    Article  PubMed  Google Scholar 

  2. Shadrach JL, Wagers AJ. Stem cells for skeletal muscle repair. Philos Trans R Soc Lond Ser B Biol Sci. 2011;366:2297–306.

    Article  CAS  Google Scholar 

  3. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Webb M, Sideris DP, Biddle M. Modulation of mitochondrial dysfunction for treatment of disease. Bioorg Med Chem Lett. 2019;29:1270–7.

    Article  CAS  PubMed  Google Scholar 

  5. Salatto CT, Miller RA, Cameron KO, et al. Selective activation of AMPK β 1-containing isoforms improves kidney function in a rat model of diabetic nephropathy. J Pharmacol Exp Ther. 2017;361:303–11.

    Article  CAS  PubMed  Google Scholar 

  6. Murphy MP, Hartley RC. Mitochondria as a therapeutic target for common pathologies. Nat Rev Drug Discov. 2018;17:865.

    Article  CAS  PubMed  Google Scholar 

  7. Sivapathasuntharam C, Sivaprasad S, Hogg C, Jeffery G. Improving mitochondrial function significantly reduces the rate of age related photoreceptor loss. Exp Eye Res. 2019;185:107691.

    Article  CAS  PubMed  Google Scholar 

  8. Payne, B. A., & Chinnery, P. F. Mitochondrial dysfunction in aging: much progress but many unresolved questions. Biochimica et Biophysica Acta (BBA)-Bioenergetics. 2015;1847(11):1347–53.

    Google Scholar 

  9. Sastre J, Pallardó FV, Plá R, Pellín A, Juan G, O’Connor JE, Estrela JM, Miquel J, Viña J. Aging of the liver: age-associated mitochondrial damage in intact hepatocytes. Hepatology. 1996;24:1199–205.

    Article  CAS  PubMed  Google Scholar 

  10. Hagen TM, Yowe DL, Bartholomew JC, Wehr CM, Do KL, Park J-Y, Ames BN. Mitochondrial decay in hepatocytes from old rats: membrane potential declines, heterogeneity and oxidants increase. Proc Natl Acad Sci U S A. 1997;94:3064–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Greco M, Villani G, Mazzucchelli F, Bresolin N, Papa S, Attardi G. Marked aging-related decline in efficiency of oxidative phosphorylation in human skin fibroblasts. FASEB J. 2003;17:1706–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ojaimi J, Masters CL, Opeskin K, McKelvie P, Byrne E. Mitochondrial respiratory chain activity in the human brain as a function of age. Mech Ageing Dev. 1999;111:39–47.

    Article  CAS  PubMed  Google Scholar 

  13. Trounce I, Byrne E, Marzuki S. Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing. Lancet. 1989;1:637–9.

    Article  CAS  PubMed  Google Scholar 

  14. Harman D. Aging: a theory based on free radical and radiation chemistry. J Gerontol. 1956;11:298–300.

    Article  CAS  PubMed  Google Scholar 

  15. Takamatsu C, Umeda S, Ohsato T, Ohno T, Abe Y, Fukuoh A, Shinagawa H, Hamasaki N, Kang D. Regulation of mitochondrial D-loops by transcription factor a and single-stranded DNA-binding protein. EMBO Rep. 2002;3:451–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pinto M, Moraes CT. Mechanisms linking mtDNA damage and aging. Free Radic Biol Med. 2015;85:250–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. DeBalsi KL, Hoff KE, Copeland WC. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases. Ageing Res Rev. 2017;33:89–104.

    Article  CAS  PubMed  Google Scholar 

  18. Scheibye-Knudsen M, Fang EF, Croteau DL, Wilson DM 3rd, Bohr VA. Protecting the mitochondrial powerhouse. Trends Cell Biol. 2015;25:158–70.

    Article  CAS  PubMed  Google Scholar 

  19. Akhmedov AT, Marín-García J. Mitochondrial DNA maintenance: an appraisal. Mol Cell Biochem. 2015;409:283–305.

    Article  CAS  PubMed  Google Scholar 

  20. Harman D. Aging: a theory based on free radical and radiation chemistry. Berkeley: University of California Radiation Laboratory; 1955.

    Google Scholar 

  21. Bua E, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM. Mitochondrial DNA–deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet. 2006;79:469–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taylor RW, Barron MJ, Borthwick GM, et al. Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest. 2003;112:1351–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Booth LN, Brunet A. The aging epigenome. Mol Cell. 2016;62:728–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pustylnikov S, Costabile F, Beghi S, Facciabene A. Targeting mitochondria in cancer: current concepts and immunotherapy approaches. Transl Res. 2018;202:35–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol. 2010;11:872–84.

    Article  CAS  PubMed  Google Scholar 

  26. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science. 2012;337:1062–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Romanello V, Scalabrin M, Albiero M, Blaauw B, Scorrano L, Sandri M. Inhibition of the fission machinery mitigates OPA1 impairment in adult skeletal muscles. Cell. 2019;8:597.

    Article  CAS  Google Scholar 

  28. Misgeld T, Schwarz TL. Mitostasis in neurons: maintaining mitochondria in an extended cellular architecture. Neuron. 2017;96:651–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kornfeld OS, Qvit N, Haileselassie B, Shamloo M, Bernardi P, Mochly-Rosen D. Interaction of mitochondrial fission factor with dynamin related protein 1 governs physiological mitochondrial function in vivo. Sci Rep. 2018;8:14034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Malka F et al. Separate fusion of outer and inner mitochondrial membranes. PubMed – NCBI. https://www.ncbi.nlm.nih.gov/pubmed/16113651. Accessed 5 Jul 2019.

  31. Frezza C, Cipolat S, Martins de Brito O, et al. OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell. 2006;126:177–89.

    Article  CAS  PubMed  Google Scholar 

  32. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer P, Lenaers G. Loss of OPA1 perturbates the mitochondrial inner membrane structure and integrity, leading to cytochrome c release and apoptosis. J Biol Chem. 2003;278:7743–6.

    Article  CAS  PubMed  Google Scholar 

  33. Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6:463–77.

    Article  CAS  PubMed  Google Scholar 

  34. Wang Y, Qin Z-H. Coordination of autophagy with other cellular activities. Acta Pharmacol Sin. 2013;34:585–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Stolz A, Ernst A, Dikic I. Cargo recognition and trafficking in selective autophagy. Nat Cell Biol. 2014;16:495–501.

    Article  CAS  PubMed  Google Scholar 

  36. Wallace, D. C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 2005;39:359–407.

    Google Scholar 

  37. Abdellatif M, Sedej S, Carmona-Gutierrez D, Madeo F, Kroemer G. Autophagy in cardiovascular aging. Circ Res. 2018;123:803–24.

    Article  CAS  PubMed  Google Scholar 

  38. Linton PJ et al. This old heart: cardiac aging and autophagy. PubMed – NCBI. https://www.ncbi.nlm.nih.gov/pubmed/25543002. Accessed 5 Jul 2019.

  39. **ao B, Sanders MJ, Carmena D, et al. Structural basis of AMPK regulation by small molecule activators. Nat Commun. 2013;4:3017.

    Article  PubMed  CAS  Google Scholar 

  40. Zhuang N, Li L, Chen S, Wang T. PINK1-dependent phosphorylation of PINK1 and Parkin is essential for mitochondrial quality control. Cell Death Dis. 2016;7:e2501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sekine S, Youle RJ. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol. 2018;16:2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Narendra DP, ** SM, Tanaka A, Suen D-F, Gautier CA, Shen J, Cookson MR, Youle RJ. PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol. 2010;8:e1000298.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Zhou C, Huang Y, Shao Y, May J, Prou D, Perier C, Dauer W, Schon EA, Przedborski S. The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proc Natl Acad Sci U S A. 2008;105:12022–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Vives-Bauza C, Zhou C, Huang Y, et al. PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci U S A. 2010;107:378–83.

    Article  CAS  PubMed  Google Scholar 

  45. Thai PN, Seidlmayer LK, Miller C, Ferrero M, Dorn GW II, Schaefer S, Bers DM, Dedkova EN. Mitochondrial quality control in aging and heart failure: influence of ketone bodies and Mitofusin-stabilizing peptides. Front Physiol. 2019;10:382.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Shiota, T., Traven, A., & Lithgow, T. Mitochondrial biogenesis: cell-cycle-dependent investment in making mitochondria. Current Biology. 2015;25(2):R78–R80.

    Google Scholar 

  47. Bouchez C, Devin A. Mitochondrial biogenesis and mitochondrial reactive oxygen species (ROS): a complex relationship regulated by the cAMP/PKA signaling pathway. Cell. 2019. https://doi.org/10.3390/cells8040287.

  48. Wu Z, Puigserver P, Andersson U, et al. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999;98:115–24.

    Article  CAS  PubMed  Google Scholar 

  49. Pickrell, A. M., & Youle, R. J. The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257–73.

    Google Scholar 

  50. Wang H, Song P, Du L, et al. Parkin ubiquitinates Drp1 for proteasome-dependent degradation: implication of dysregulated mitochondrial dynamics in Parkinson disease. J Biol Chem. 2011;286:11649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Exner N, Treske B, Paquet D, et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by Parkin. J Neurosci. 2007;27:12413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schapira, A. H. Etiology of Parkinson’s disease. Neurology. 2006; 66(10 suppl 4), S10–S23.

    Google Scholar 

  53. Baloyannis SJ. Mitochondrial alterations in Alzheimer’s disease. J Alzheimers Dis. 2006;9:119–26.

    Article  PubMed  Google Scholar 

  54. Reddy PH, Tripathi R, Troung Q, et al. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer’s disease: implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta. 2012;1822:639–49.

    Article  CAS  PubMed  Google Scholar 

  55. Cho D-H, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S-nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science. 2009;324:102–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Marzetti E, Calvani R, Cesari M, Buford TW, Lorenzi M, Behnke BJ, Leeuwenburgh C. Mitochondrial dysfunction and sarcopenia of aging: from signaling pathways to clinical trials. Int J Biochem Cell Biol. 2013;45:2288–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Iqbal S, Ostojic O, Singh K, Joseph A-M, Hood DA. Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle Nerve. 2013;48:963–70.

    Article  CAS  PubMed  Google Scholar 

  58. Tezze C, Romanello V, Desbats MA, et al. Age-associated loss of OPA1 in muscle impacts muscle mass, metabolic homeostasis, systemic inflammation, and epithelial senescence. Cell Metab. 2017;25:1374–89.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Favaro G, Romanello V, Varanita T, et al. DRP1-mediated mitochondrial shape controls calcium homeostasis and muscle mass. Nat Commun. 2019;10:2576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Buso A, Comelli M, Picco R, et al. Mitochondrial adaptations in elderly and young men skeletal muscle following 2 weeks of bed rest and rehabilitation. Front Physiol. 2019;10:474.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Ghosh S, Lertwattanarak R, Lefort N, et al. Reduction in reactive oxygen species production by mitochondria from elderly subjects with normal and impaired glucose tolerance. Diabetes. 2011;60:2051–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res. 2009;84:91–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Niemann B, Chen Y, Teschner M, Li L, Silber R-E, Rohrbach S. Obesity induces signs of premature cardiac aging in younger patients: the role of mitochondria. J Am Coll Cardiol. 2011;57:577–85.

    Article  CAS  PubMed  Google Scholar 

  64. Niemann B, Pan R, Teschner M, Boening A, Silber R-E, Rohrbach S. Age and obesity-associated changes in the expression and activation of components of the AMPK signaling pathway in human right atrial tissue. Exp Gerontol. 2013;48:55–63.

    Article  CAS  PubMed  Google Scholar 

  65. Boengler K, Kosiol M, Mayr M, Schulz R, Rohrbach S. Mitochondria and ageing: role in heart, skeletal muscle and adipose tissue. J Cachexia Sarcopenia Muscle. 2017;8:349–69.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Billia F, Hauck L, Konecny F, Rao V, Shen J, Mak TW. PTEN-inducible kinase 1 (PINK1)/Park6 is indispensable for normal heart function. Proceedings of the National Academy of Sciences. 2011;108(23):9572–77.

    Google Scholar 

  67. Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer’s disease: implications for neuronal damage. Hum Mol Genet. 2011;20:2495–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF. Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci. 2017;40:151–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Srivastava, S. The mitochondrial basis of aging and age-related disorders. Genes. 2017;8(12):398.

    Google Scholar 

  70. Kitada M, Ogura Y, Monno I, Koya D. The impact of dietary protein intake on longevity and metabolic health. EBioMedicine. 2019;43:632–40.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Herst PM, Rowe MR, Carson GM, Berridge MV. Functional mitochondria in health and disease. Front Endocrinol. 2017;8:296.

    Article  Google Scholar 

  72. López-Lluch G, Hernández-Camacho JD, Fernández-Ayala DJM, Navas P. Mitochondrial dysfunction in metabolism and ageing: shared mechanisms and outcomes? Biogerontology. 2018;19:461–80.

    Article  PubMed  CAS  Google Scholar 

  73. Long YC, Tan TMC, Takao I, Tang BL. The biochemistry and cell biology of aging: metabolic regulation through mitochondrial signaling. Am J Physiol Endocrinol Metab. 2014;306:E581–91.

    Article  CAS  PubMed  Google Scholar 

  74. Zhang R, Wang Y, Ye K, Picard M, Gu Z. Independent impacts of aging on mitochondrial DNA quantity and quality in humans. BMC Genomics. 2017;18:890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Hebert SL, Lanza IR, Nair KS. Mitochondrial DNA alterations and reduced mitochondrial function in aging. Mech Ageing Dev. 2010;131:451–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Liu D, Li H, Lu J, Bai Y. Tissue-specific implications of mitochondrial alterations in aging. Front Biosci. 2013;5:734–47.

    Article  Google Scholar 

  77. Nissanka N, Moraes CT. Mitochondrial DNA damage and reactive oxygen species in neurodegenerative disease. FEBS Lett. 2018;592:728–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hughes VA, Frontera WR, Wood M, Evans WJ, Dallal GE, Roubenoff R, Fiatarone Singh MA. Longitudinal muscle strength changes in older adults: influence of muscle mass, physical activity, and health. J Gerontol A Biol Sci Med Sci. 2001;56:B209–17.

    Article  CAS  PubMed  Google Scholar 

  79. Lenk K, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2010;1:9–21.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Carter HN, Chen CCW, Hood DA. Mitochondria, muscle health, and exercise with advancing age. Physiology. 2015;30:208–23.

    Article  CAS  PubMed  Google Scholar 

  81. Short KR, Bigelow ML, Kahl J, Singh R, Coenen-Schimke J, Raghavakaimal S, Nair KS. Decline in skeletal muscle mitochondrial function with aging in humans. Proc Natl Acad Sci. 2005;102:5618–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zane AC, Reiter DA, Shardell M, Cameron D, Simonsick EM, Fishbein KW, Studenski SA, Spencer RG, Ferrucci L. Muscle strength mediates the relationship between mitochondrial energetics and walking performance. Aging Cell. 2017;16:461–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gueugneau M, Coudy-Gandilhon C, Gourbeyre O, et al. Proteomics of muscle chronological ageing in post-menopausal women. BMC Genomics. 2014;15:1165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Peterson CM, Johannsen DL, Ravussin E. Skeletal muscle mitochondria and aging: a review. J Aging Res. 2012;2012:1–20.

    Article  Google Scholar 

  85. Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal muscle. Cold Spring Harb Perspect Med. 2018. https://doi.org/10.1101/cshperspect.a029785.

  86. Lalia AZ, Dasari S, Robinson MM, Abid H, Morse DM, Klaus KA, Lanza IR. Influence of omega-3 fatty acids on skeletal muscle protein metabolism and mitochondrial bioenergetics in older adults. Aging. 2017;9:1096–129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kent JA, Fitzgerald LF. In vivo mitochondrial function in aging skeletal muscle: capacity, flux, and patterns of use. J Appl Physiol. 2016;121:996–1003.

    Article  CAS  PubMed  Google Scholar 

  88. Fontana L, Meyer TE, Klein S, Holloszy JO. Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A. 2004;101:6659–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Mercken EM, Crosby SD, Lamming DW, et al. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013;12:645–51.

    Article  CAS  PubMed  Google Scholar 

  90. Potes Y, Pérez-Martinez Z, Bermejo-Millo JC, et al. Overweight in the elderly induces a switch in energy metabolism that undermines muscle integrity. Aging Dis. 2019;10:217–30.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, Register TC, Molina AJA. Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: implications for a minimally invasive biomarker of mitochondrial health. Redox Biol. 2016;10:65–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chaudhary KR, El-Sikhry H, Seubert JM. Mitochondria and the aging heart. J Geriatr Cardiol. 2011;8:159–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lesnefsky EJ, Chen Q, Hoppel CL. Mitochondrial metabolism in aging heart. Circ Res. 2016;118:1593–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun Z. Aging, arterial stiffness, and hypertension. Hypertension. 2015;65:252–6.

    Article  CAS  PubMed  Google Scholar 

  95. Palmer JW, Tandler B, Hoppel CL. Biochemical properties of subsarcolemmal and interfibrillar mitochondria isolated from rat cardiac muscle. J Biol Chem. 1977;252:8731–9.

    CAS  PubMed  Google Scholar 

  96. Wei Y-H, Wu S-B, Ma Y-S, Lee H-C. Respiratory function decline and DNA mutation in mitochondria, oxidative stress and altered gene expression during aging. Chang Gung Med J. 2009;32:113–32.

    PubMed  Google Scholar 

  97. Kates AM, Herrero P, Dence C, Soto P, Srinivasan M, Delano DG, Ehsani A, Gropler RJ. Impact of aging on substrate metabolism by the human heart. J Am Coll Cardiol. 2003;41:293–9.

    Article  CAS  PubMed  Google Scholar 

  98. Gómez LA, Monette JS, Chavez JD, Maier CS, Hagen TM. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys. 2009;490:30–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Emelyanova L, Preston C, Gupta A, et al. Effect of aging on mitochondrial energetics in the human atria. J Gerontol A Biol Sci Med Sci. 2018;73:608–16.

    Article  CAS  PubMed  Google Scholar 

  100. Paradies G, Paradies V, Ruggiero FM, Petrosillo G. Changes in the mitochondrial permeability transition pore in aging and age-associated diseases. Mech Ageing Dev. 2013;134:1–9.

    Article  CAS  PubMed  Google Scholar 

  101. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res Int. 2014;2014:238463.

    PubMed  PubMed Central  Google Scholar 

  102. Müller-Höcker J. Cytochrome-c-oxidase deficient cardiomyocytes in the human heart – an age-related phenomenon. A histochemical ultracytochemical study. Am J Pathol. 1989;134:1167–73.

    PubMed  PubMed Central  Google Scholar 

  103. Wegrzyn J, Potla R, Chwae J-Y, et al. Function of mitochondrial Stat3 in cellular respiration. Science. 2009;323:793–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Yin F, Sancheti H, Patil I, Cadenas E. Energy metabolism and inflammation in brain aging and Alzheimer’s disease. Free Radic Biol Med. 2016;100:108–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Selvaraji S, Poh L, Natarajan V, Mallilankaraman K, Arumugam TV. Negative conditioning of mitochondrial dysfunction in age-related neurodegenerative diseases. Cond Med. 2019;2:30–9.

    PubMed  PubMed Central  Google Scholar 

  106. Boumezbeur F, Mason GF, de Graaf RA, Behar KL, Cline GW, Shulman GI, Rothman DL, Petersen KF. Altered brain mitochondrial metabolism in healthy aging as assessed by in vivo magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 2010;30:211–21.

    Article  CAS  PubMed  Google Scholar 

  107. Zhu X-H, Lu M, Lee B-Y, Ugurbil K, Chen W. In vivo NAD assay reveals the intracellular NAD contents and redox state in healthy human brain and their age dependences. Proc Natl Acad Sci U S A. 2015;112:2876–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Blass JP, Sheu RK, Gibson GE. Inherent abnormalities in energy metabolism in Alzheimer disease. Interaction with cerebrovascular compromise. Ann N Y Acad Sci. 2000;903:204–21.

    Article  CAS  PubMed  Google Scholar 

  109. Liang WS, Reiman EM, Valla J, et al. Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci U S A. 2008;105:4441–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Grünewald A, Rygiel KA, Hepplewhite PD, Morris CM, Picard M, Turnbull DM. Mitochondrial DNA depletion in respiratory chain-deficient Parkinson disease neurons. Ann Neurol. 2016;79:366–78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Reeve A, Meagher M, Lax N, Simcox E, Hepplewhite P, Jaros E, Turnbull D. The impact of pathogenic mitochondrial DNA mutations on substantia nigra neurons. J Neurosci. 2013;33:10790–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lowell BB. Mitochondrial dysfunction and type 2 diabetes. Science. 2005;307:384–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by CONACYT grant FOSSIS-272256, as well as the “Red Temática de Investigación en Salud y Desarrollo Social” from CONACYT. Morales-Rosales is a CONACYT scholarship holder (CVU 718720 and scholarship number 702613). Authors thank Ariadna Guerrero-Cruz for the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Königsberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morales-Rosales, S.L., Rivero-Segura, N.A., Königsberg, M. (2020). Mitochondrial Function in Aging. In: Gomez-Verjan, J., Rivero-Segura, N. (eds) Clinical Genetics and Genomics of Aging. Springer, Cham. https://doi.org/10.1007/978-3-030-40955-5_4

Download citation

Publish with us

Policies and ethics

Navigation