Part of the book series: Studies in Computational Intelligence ((SCI,volume 878))

  • 252 Accesses

Abstract

Duality via truth is a kind of correspondence between a class of algebras and a class of relational systems (frames, following terminology well-known in non-classical logics). The first class is viewed as an algebraic semantics of some logic, whereas the other class constitutes Kripke-style semantics of this logic. The duality principle underlying the duality via truth states that algebras and their corresponding frames provide equivalent semantics for this logic in the sense that a formula is true with respect to one semantics if and only if it is true with respect to the other semantics. Consequently, the algebras and the frames express the equivalent notions of truth and in this sense they are viewed as dual structures. In this paper we develop duality via truth for a fuzzy modal logic. The MTL logic, introduced by Esteva and Godo, is taken as a basis. Several axiomatic extensions, motivated by well-known schemas of modal logic, are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stone, M.: The theory of representations of Boolean algebras. Trans. Am. Math. Soc. 40, 37–111 (1936). https://doi.org/10.2307/1989664

    Article  MathSciNet  MATH  Google Scholar 

  2. Stone, M.H.: Topological representation of distributive lattices and Brouwerian logics. Časopis pro pěstování matematiky a fysiky 67, 1–25 (1938). http://eudml.org/doc/27235

  3. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. Am. J. Math. 73, 891–939 (1951). https://doi.org/10.2307/2372123

    Article  MathSciNet  MATH  Google Scholar 

  4. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part II. Am. J. Math. 74, 127–162 (1952). https://doi.org/10.2307/2372074

    Article  MathSciNet  MATH  Google Scholar 

  5. Maksimova, L.L.: Pretabular superintuitionistic logics. Algebr. Log. 11(5), 558–570 (1972). https://doi.org/10.1007/BF02330744

    Article  MathSciNet  Google Scholar 

  6. Maksimova, L.L.: Pretabular extensionsof the Lewis’ logic S4. Algebr. Log. 14(1), 28–55 (1975). https://doi.org/10.1007/BF01668576

    Article  Google Scholar 

  7. Priestley, H.A.: Representation of distribitive lattices by means of ordered Stone spaces. Bull. Lond. Math. Soc. 2, 186–190 (1970)

    Article  Google Scholar 

  8. Priestley, H.A.: Ordered topological spaces and the representation of distributive lattices. Proc. Lond. Math. Soc. 24, 507–530 (1972). https://doi.org/10.1112/plms/s3-24.3.507

    Article  MathSciNet  MATH  Google Scholar 

  9. Urquhart, A.: A topological representation theorem for lattices. Algebra Universalis 8, 45–58 (1978). https://doi.org/10.1007/BF02485369

    Article  MathSciNet  MATH  Google Scholar 

  10. Allwein, G., Dunn, M.: Kripke models for linear logic. J. Symb. Log. 58, 514–545 (1993). https://doi.org/10.2307/2275217

    Article  MathSciNet  MATH  Google Scholar 

  11. Orłowska, E., Rewitzky, I.: Duality via truth: Semantic frameworks for lattice-based logics. Log. J. IGPL 13(4), 467–490 (2005). https://doi.org/10.1093/jigpal/jzi035

    Article  MathSciNet  MATH  Google Scholar 

  12. Orłowska, E., Radzikowska, A.M., Rewitzky, I.: Dualities for Structures of Applied Logics,Mathematical Logic and Foundations, vol. 56. College Publications (2015). ISBN 978-84890-181-0

    Google Scholar 

  13. Orłowska, E., Golińska-Pilarek, J.: Dual Tableaux: foundations, Methodology, Case Studies, Trends in Logic, vol. 33. Springer, Dordrecht, Heidelberg, London, New York (2011). https://doi.org/10.1007/978-94-007-0005-5

  14. Düntsch, I., Orłowska, E., Radzikowska, A.M.: Lattice-based relation algebras and their representability. In: de Swart, H.C.M., et al (ed.) Theory and Applications of Relational Structures as Knowledge Instruments, Lecture Notes in Computer Science, vol. 2929, pp. 234–258. Springer-Verlag (2003). https://doi.org/10.1007/978-3-540-24615-2_11

  15. Düntsch, I., Orłowska, E., Radzikowska, A.M.: Lattice-based relation algebras II. In: de Swart, H.C.M. E. Orłowska, Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments II, Lecture Notes in Artificial Intelligence, vol. 4342, pp. 267–289. Springer-Verlag (2006). https://doi.org/10.1007/11964810_13

  16. Orłowska, E., Radzikowska, A.M.: Discrete duality for some axiomatic extensions of MTL algebras. In: Cintula, P., Hanikowá, Z., Svejdar, V. (eds.) Witnessed Years. Essays in Honour of Petr Hájek, pp. 329–344. College Publications, King’s College London (2010)

    Google Scholar 

  17. Orłowska, E., Radzikowska, A.M.: Representation theorems for some fuzzy logics based on residuated non-distributive lattices. Fuzzy Sets Syst. 159, 1247–1259 (2008). https://doi.org/10.1016/j.fss.2007.12.009

    Article  MathSciNet  MATH  Google Scholar 

  18. Orłowska, E., Radzikowska, A.M.: Knowledge algebras and their discrete duality. In: A. Skowron, Z. Suraj (eds.) Rough Sets and Intelligent Systems – Progessor Pawlak in Memorium, Intelligent Systems Reference Library, vol. 43, pp. 7–20. Springer–Verlag Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-642-30341-8_2

  19. Radzikowska, A.M.: Duality via truth for information algebras based on De Morgan lattices. Fundam. Inform. 144(1), 45–72 (2016). https://doi.org/10.3233/FI-2016-1323

    Article  MathSciNet  MATH  Google Scholar 

  20. Figallo, A.V., Pelaitay, G.: Discrete duality for tense łukasiewicz-Moisil algebras. Fundam. Inform. 136(4), 317–329 (2015)

    Article  Google Scholar 

  21. Orłowska, E., Radzikowska, A.M.: Relational representability for algebras of substructural logics. In: MacCaull, W., Winter, M., Düntsch, I. (eds.) Relational methods in Computer Science, Lecture Notes in Computer Science, vol. 3929, pp. 212–226. Springer–Verlag (2006). https://doi.org/10.1007/11734673_2

  22. Figallo, A.V., Pelaitay, G.: An algebraic axiomatization of the Ewald’s intuitionistic tense logic. Soft Comput. 18(10), 1873–1883 (2014). https://doi.org/10.1007/s00500-014-1317-6

    Article  MATH  Google Scholar 

  23. Orłowska, E., Rewitzky, I.: Discrete dualities for heyting algebras with operators. Fundam. Inform. 81(1–3), 275–295 (2007)

    MathSciNet  MATH  Google Scholar 

  24. Radzikowska, A.M., Kerre, E.E.: A comparatice study of fuzzy rough sets. Fuzzy Sets Syst. 126(1), 137–155 (2002). https://doi.org/10.1016/S0165-0114(01)00032-X

    Article  MATH  Google Scholar 

  25. Radzikowska, A.M., Kerre, E.E.: Fuzzy Rough Sets based on Residuated Lattices. In: Peters, J.F., Skowron, A., Dubois, D., Grzymała-Busse, J.W., Inuiguchi, M., Polkowski, L. (eds.) Transactions on Rough Sets II: Rough Sets and Fuzzy Sets, Lecture Notes in Computer Science, vol. 3135, pp. 278–296. Springer-Verlag Berlin Heidelberg (2004). https://doi.org/10.1007/978-3-540-27778-1_14

  26. Radzikowska, A.M., Kerre, E.E.: Lattice-based fuzzy information relations and operators. In: Proceedings of Workshop on Data and Knowledge Engineering EUROFUSE, September 22-25, 2004, Warsaw, Poland, pp. 433–443. Akademicka Oficyna Wydawnicza EXIT (2004)

    Google Scholar 

  27. Radzikowska, A.M., Kerre, E.E.: An Algebraic Approach to Fuzzy Modalities. In: Hryniewicz, O., Kacprzyk, J., Kuchta, D. (eds.) Issues in Soft Computing - Decisions and Operation Research, pp. 71–86. Akademicka Oficyna Wydawnicza EXIT, Warsaw, Poland (2005)

    Google Scholar 

  28. Radzikowska, A.M., Kerre, E.E.: Characterisationof main classes of fuzzy relations using fuzzy modal operators. Fuzzy Sets Syst. 152(2), 223–247 (2005). https://doi.org/10.1016/j.fss.2007.12.009

    Article  MATH  Google Scholar 

  29. Radzikowska, A.M., Kerre, E.E.: Fuzzy Information Relations and Operators: An Algebraic Approach Based on Residuated Lattices. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens M. (eds.) Theory and Applications of Relational Structures as Knowledge Instruments II, no. 4342 in Lecture Notes in Artificial Intelligence, pp. 162–184. Springer-Verlag (2006). https://doi.org/10.1007/11964810_8

  30. Radzikowska, A.M., Kerre, E.E.: On some classes of fuzzy imformation relations. In: Proceedings 31st IEEE International Symposium on Multiple-Valued Logic (2001). https://doi.org/10.1109/ISMVL.2001.924557

  31. Radzikowska, A.M., Kerre, E.E.: A fuzzy generalization of information relations. In: Beyond Two: Theory and Applications of Multiple-Valued Logics, Studies in Fuzziness and Soft Computing, vol. 114, pp. 264–290. Physica-Verlag Heidelberg (2002). https://doi.org/10.1007/978-3-7908-1769-0

  32. Radzikowska, A.M., Kerre, E.E.: Algebraic characterizations of some fuzzy information relations. In: Proceedings of the 13rd IEEE International Conference on Fuzzy Systems FUZZ–IEEE, July 25-29, 2004, Budapest, Hungary, vol. 1, pp. 115–120 (2004). https://doi.org/10.1109/FUZZY.2004.1375698

  33. Radzikowska, A.M., Kerre, E.E.: Algebraic characterisations of some fuzzy information relations. In: Hryniewicz, O., Kacprzyk, J., Kuchta, D. (eds.) Soft Computing: Foundations and Theoretical Aspects, pp. 71–86. Akademicka Oficyna Wydawnicza EXIT, Warsaw (2005)

    Google Scholar 

  34. Radzikowska, A.M.: Fuzzy modal-like approximation operations based on residuated lattices. In: Proceedings of the 11th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU, July 2-7, 2006, Paris, France, pp. 444–451 (2006)

    Google Scholar 

  35. Esteva, F., Godo, L.: Monoidal t–norm based logic: towards a logic for left–continuous t–norms. Fuzzy Sets and Systems 124, 271–288 (2001). https://doi.org/10.1016/S0165-0114(01)00098-7

  36. Orłowska, E., Rewitzky, I.: Algebras for Galois-style connections and their discrete duality. Fuzzy Sets Syst. 161(9), 1325–1342 (2010). https://doi.org/10.1016/j.fss.2009.12.013

    Article  MathSciNet  MATH  Google Scholar 

  37. Chellas, B.F.: Modal Logic: An Introduction. University Press, Cambridge (1980)

    Book  Google Scholar 

  38. Balbes, R., Dwinger, P.: Distributive Lattices. University of Missouri Press, Columbia (1974)

    MATH  Google Scholar 

  39. Blount, K., Tsinakis, C.: The structure of residuated lattices. Int. J. of Algebra Comput. 13(4), 437–461 (2003). https://doi.org/10.1142/S0218196703001511

    Article  MathSciNet  MATH  Google Scholar 

  40. Hájek, P.: Metamathematics of fuzzy logic. Kluwer, Dordrecht (1998). https://doi.org/10.1007/978-94-011-5300-3

  41. Jipsen, P., Tsinaksis, C.: A Survey of residuated lattices. In: Martinez, J. (ed.) Ordered Algebraic Structures, pp. 19–56. Kluwer Academic Publishers, Dordrecht (2003). https://doi.org/10.1007/978-1-4757-3627-4_3

Download references

Acknowledgements

This paper is dedicated to Prof. Elbert Walker, a passionated fuzzy mathematician with whom we could talk about universal algebra!

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Maria Radzikowska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Radzikowska, A.M., Kerre, E.E. (2020). Duality via Truth for Some Fuzzy Modal Logic. In: Nguyen, H., Kreinovich, V. (eds) Algebraic Techniques and Their Use in Describing and Processing Uncertainty. Studies in Computational Intelligence, vol 878. Springer, Cham. https://doi.org/10.1007/978-3-030-38565-1_11

Download citation

Publish with us

Policies and ethics

Navigation