Sperm DNA Fragmentation and Male Infertility

  • Chapter
  • First Online:
Genetics of Male Infertility

Abstract

Sperm DNA fragmentation (SDF) is associated with male infertility, and it adversely affects reproductive outcomes. Both chromatin integrity and protamination status determine the extent of DNA damage. Oxidative stress due to increased levels of reactive oxygen species in the seminal fluid damages sperm DNA. Several tests have been introduced into the clinical laboratory settings to assess the sperm chromatin integrity and the extent of SDF. This chapter elucidatesĀ the molecular changes, specifically proteomic alterations, caused due to SDF. Moreover, the factors affecting sperm DNA integrity and the consequences of increased SDF are highlighted. ItĀ also focusses on the importance of SDF testing and its impact on reproductive outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Fleming S, Green S, Hall J, Hunter A. Analysis and alleviation of male infertility. Microsc Anal. 1995;45:35ā€“7.

    Google ScholarĀ 

  2. Neri Q, Tanaka N, Wang A, Katagiri Y, Takeuchi T, Rosenwaks Z, et al. Intracytoplasmic sperm injection. Minerva Ginecol. 2004;56:189ā€“96.

    CASĀ  PubMedĀ  Google ScholarĀ 

  3. Al Omrani B, Al Eisa N, Javed M, Al Ghedan M, Al Matrafi H, Al Sufyan H. Associations of sperm DNA fragmentation with lifestyle factors and semen parameters of Saudi men and its impact on ICSI outcome. Reprod Biol Endocrinol. 2018;16(1):49.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  4. GonzĆ”lez-MarĆ­n C, GosĆ”lvez J, Roy R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int J Mol Sci. 2012;13(11):14026ā€“52.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  5. Jarrow J, Sigman M, Kolettis PN, Lipshultz LR, McClure RD, et al. Optimal evaluation of the infertile male. AUA best practice statement reviewed and validity confirmed. 2011.

    Google ScholarĀ 

  6. Male infertility. EAU guidelines [Internet]. 2017 [cited September, 2018]. Available from: https://uroweb.org/guideline/male-infertility/.

  7. Conwell CC, Vilfan ID, Hud NV. Controlling the size of nanoscale toroidal DNA condensates with static curvature and ionic strength. Proc Natl Acad Sci. 2003;100(16):9296ā€“301.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Simon L, Aston K, Emery B, Hotaling J, Carrell D. Sperm DNA damage output parameters measured by the alkaline comet assay and their importance. Andrologia. 2017;49(2):e12608.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Simon L, Murphy K, Shamsi M, Liu L, Emery B, Aston K, et al. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29(11):2402ā€“12.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  10. Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2009;16(1):30ā€“6.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  11. Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod. 2006;75(3):442ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Page AW, Orr-Weaver TL. Stop** and starting the meiotic cell cycle. Curr Opin Genet Dev. 1997;7(1):23ā€“31.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8(1):11ā€“29.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Laberge R-M, Boissonneault G. On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod. 2005;73(2):289ā€“96.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Erenpreiss J, Bars J, Lipatnikova V, Erenpreisa J, Zalkalns J. Comparative study of cytochemical tests for sperm chromatin integrity. J Androl. 2001;22(1):45ā€“53.

    CASĀ  PubMedĀ  Google ScholarĀ 

  16. GonzƔlez-Rojo S, FernƔndez-Dƭez C, Guerra SM, Robles V, Herraez MP. Differential gene susceptibility to sperm DNA damage: analysis of developmental key genes in trout. PLoS One. 2014;9(12):e114161.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  17. Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31(3):309ā€“19.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Ahmad G, Agarwal A. Ionizing radiation and male fertility. In: Male infertility: Springer, New Delhi; 2017. p. 185ā€“96.

    Google ScholarĀ 

  19. Henkel R, Kierspel E, Stalf T, Mehnert C, Menkveld R, Tinneberg H-R, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83(3):635ā€“42.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Sakkas D, Manicardi G, Grace Bianchi P, Bizzaro D, Bianchi U. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod. 1995;52(5):1149ā€“55.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Esteves SC, SĆ”nchez-MartĆ­n F, SĆ”nchez-MartĆ­n P, Schneider DT, GosĆ”lvez J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104(6):1398ā€“405.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  23. John Aitken R, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41(1):183ā€“97.

    ArticleĀ  Google ScholarĀ 

  24. Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101(12):1547ā€“52.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26ā€“37.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Wang Y-J, Zhang R-Q, Lin Y-J, Zhang R-G, Zhang W-L. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25(3):307ā€“14.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KHM, et al. Sperm nuclear DNA fragmentation rate is associated with differential protein expression and enriched functions in human seminal plasma. BJU Int. 2013;112(6):835ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KHM, et al. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J Assist Reprod Genet. 2013;30(9):1187ā€“202.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Skowronek F, Casanova G, Alciaturi J, Capurro A, Cantu L, Montes JM, et al. DNA sperm damage correlates with nuclear ultrastructural sperm defects inā€ƒteratozoospermic men. Andrologia. 2012;44(1):59ā€“65.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Puga Molina LC, Luque GM, Balestrini PA, MarĆ­n-Briggiler CI, Romarowski A, Buffone MG. Molecular basis of human sperm capacitation. Front Cell Dev Biol. 2018;6:72.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  31. Guraya SS. Cellular and molecular biology of capacitation and acrosome reaction in spermatozoa. Int Rev Cytol. 2000;199:1ā€“64.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KH, et al. Sperm nuclear DNA fragmentation rate is associated with differential protein expression and enriched functions in human seminal plasma. BJU Int. 2013;112(6):835ā€“43.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Behrouzi B, Kenigsberg S, Alladin N, Swanson S, Zicherman J, Hong S-H, et al. Evaluation of potential protein biomarkers in patients with high sperm DNA damage. Syst Biol Reprod Med. 2013;59(3):153ā€“63.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Intasqui P, Camargo M, Antoniassi MP, Cedenho AP, Carvalho VM, Cardozo KHM, et al. Association between the seminal plasma proteome and sperm functional traits. Fertil Steril. 2016;105(3):617ā€“28.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Antoniassi MP, Intasqui P, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KH, et al. Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU Int. 2016;118(5):814ā€“22.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  36. Sharma R, Agarwal A, Mohanty G, Du Plessis SS, Gopalan B, Willard B, et al. Proteomic analysis of seminal fluid from men exhibiting oxidative stress. Reprod Biol Endocrinol. 2013;11:85.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  37. Cho C-L, Agarwal A. Role of sperm DNA fragmentation in male factor infertility: a systematic review. Arab J Urol. 2018;16(1):21ā€“34.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  38. Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597ā€“605.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  39. Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829ā€“43.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  40. Sakkas D, Urner F, Bizzaro D, Manicardi G, Bianchi P, Shoukir Y, et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod. 1998;13(suppl_4):11ā€“9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  41. AvendaƱo C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077ā€“84.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  42. AvendaƱo C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549ā€“57.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  43. Saleh RA, Agarwal A, Nelson DR, Nada EA, El-Tonsy MH, Alvarez JG, et al. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78(2):313ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  44. Agarwal A, Cho C-L, Majzoub A, Esteves SC. The role of female factors in the management of sperm DNA fragmentation. Transl Androl Urol. 2017;6(Suppl 4):S488.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  45. Engel W, Sancken U, Laccone F. Paternal age from a genetic point of view. J Reproduktionsmed Endokrinol. 2004;1:263ā€“7.

    Google ScholarĀ 

  46. Alshahrani S, Agarwal A, Assidi M, Abuzenadah AM, Durairajanayagam D, Ayaz A, et al. Infertile men older than 40 years are at higher risk of sperm DNA damage. Reprod Biol Endocrinol. 2014;12(1):103.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  47. Winkle T, Rosenbusch B, Gagsteiger F, Paiss T, Zoller N. The correlation between male age, sperm quality and sperm DNA fragmentation in 320 men attending a fertility center. J Assist Reprod Genet. 2009;26(1):41ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  48. Brahem S, Mehdi M, Elghezal H, Saad A. The effects of male aging on semen quality, sperm DNA fragmentation and chromosomal abnormalities in an infertile population. J Assist Reprod Genet. 2011;28(5):425ā€“32.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  49. Luetjens C, Rolf C, Gassner P, Werny J, Nieschlag E. Sperm aneuploidy rates in younger and older men. Hum Reprod. 2002;17(7):1826ā€“32.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med. 1996;74(6):297ā€“312.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Agarwal A, Sengupta P, Durairajanayagam D. Role of L-carnitine in female infertility. Reprod Biol Endocrinol. 2018;16(1):5.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  52. Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod Biomed. 2016;14(12):729.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  53. Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349ā€“53.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  54. Cui X, **g X, Wu X, Wang Z, Li Q. Potential effect of smoking on semen quality through DNA damage and the downregulation of Chk1 in sperm. Mol Med Rep. 2016;14(1):753ā€“61.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Akang EN, Oremosu AA, Osinubi AA, James AB, Biose IJ, Dike SI, et al. Alcohol-induced male infertility: is sperm DNA fragmentation a causative? J Exp Clin Anatomy. 2017;16(1):53.

    Google ScholarĀ 

  56. Anifandis G, Bounartzi T, Messini C, Dafopoulos K, Sotiriou S, Messinis I. The impact of cigarette smoking and alcohol consumption on sperm parameters and sperm DNA fragmentation (SDF) measured by HalospermĀ®. Arch Gynecol Obstet. 2014;290(4):777ā€“82.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  57. De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2ā€²-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81(3):517ā€“24.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Mitchell L, De Iuliis G, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2011;34(1):2ā€“13.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Dupont C, Faure C, Sermondade N, Boubaya M, Eustache F, ClƩment P, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl. 2013;15(5):622.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  60. Bakos H, Mitchell M, Setchell B, Lane M. The effect of paternal dietā€induced obesity on sperm function and fertilization in a mouse model. Int J Androl. 2011;34(5pt1):402ā€“10.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  61. Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012;2(4):253ā€“63.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Sengupta P. Environmental and occupational exposure of metals and their role in male reproductive functions. Drug Chem Toxicol. 2013;36(3):353ā€“68.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Sengupta P, Banerjee R. Environmental toxins: alarming impacts of pesticides on male fertility. Hum Exp Toxicol. 2014;33(10):1017ā€“39.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  64. Jeng HA. Exposure to endocrine disrupting chemicals and male reproductive health. Front Public Health. 2014;2:55.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Evenson DP, Wixon R. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSAĀ®). Toxicol Appl Pharmacol. 2005;207(2):532ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124ā€“8.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  67. Morris ID. Sperm DNA damage and cancer treatment 1. Int J Androl. 2002;25(5):255ā€“61.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  68. Smit M, Van Casteren N, Wildhagen M, Romijn J, Dohle G. Sperm DNA integrity in cancer patients before and after cytotoxic treatment. Hum Reprod. 2010;25(8):1877ā€“83.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  69. Ochsendorf F. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399ā€“420.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Gallegos G, Ramos B, Santiso R, Goyanes V, GosĆ”lvez J, FernĆ”ndez JL. Sperm DNA fragmentation in infertile men with genitourinary infection by chlamydia trachomatis and mycoplasma. Fertil Steril. 2008;90(2):328ā€“34.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  71. Erenpreiss J, Hlevicka S, Zalkalns J, Erenpreisa J. Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J Androl. 2002;23(5):717ā€“23.

    PubMedĀ  Google ScholarĀ 

  72. Majzoub A, Agarwal A, Cho CL, Esteves SC. Sperm DNA fragmentation testing: a cross sectional survey on current practices of fertility specialists. Transl Androl Urol. 2017;6(Suppl 4):S710ā€“9.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. AUGER J, MESBAH M, HUBER C, DADOUNE JP. Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl. 1990;13(6):452ā€“62.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Manicardi GC, Bizzaro D, Basic SD. Clinical aspects of sperm chromomycin A3 assay. In: Zini A, Agarwal A, editors. Sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. New York: Springer New York; 2011. p. 171ā€“9.

    ChapterĀ  Google ScholarĀ 

  75. Manicardi GC, Bianchi PG, Pantano S, Azzoni P, Bizzaro D, Bianchi U, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility1. Biol Reprod. 1995;52(4):864ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  76. Sakkas D, Urner F, Bizzaro D, Manicardi G, Bianchi PG, Shoukir Y, et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod. 1998;13(suppl_4):11ā€“9.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  77. Evenson DP. The Sperm Chromatin Structure Assay (SCSAĀ®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci. 2016;169:56ā€“75.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Evenson DP, LARSON KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23(1):25ā€“43.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  79. Evenson DP. Sperm Chromatin Structure Assay (SCSAĀ®): 30 years of experience with the SCSAĀ®. In: Sperm chromatin: Springer, New York, NY; 2011. p. 125ā€“49.

    ChapterĀ  Google ScholarĀ 

  80. FernĆ”ndez JL, Muriel L, Goyanes V, Segrelles E, GosĆ”lvez J, Enciso M, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833ā€“42.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  81. FernĆ”ndez JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59ā€“66.

    PubMedĀ  Google ScholarĀ 

  82. Pratap H, Hottigoudar SY, Nichanahalli KS, Chand P. Assessment of sperm deoxyribose nucleic acid fragmentation using sperm chromatin dispersion assay. J Pharmacol Pharmacother. 2017;8(2):45ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  83. Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984;123(1):291ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  84. Singh NP, Danner DB, Tice RR, McCoy MT, Collins GD, Schneider EL. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res. 1989;184(2):461ā€“70.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. Methods Mol Biol 2013;927:121ā€“36.

    Google ScholarĀ 

  86. Gupta S, Sharma R, Agarwal A. Interā€and intraā€laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Curr Protoc Toxicol. 2017;74(1):16.1. 1-.1. 22.

    ArticleĀ  CASĀ  Google ScholarĀ 

  87. Mahfouz RZ, Said TM, Agarwal A. The diagnostic and therapeutic applications of flow cytometry in male infertility. Arch Med Sci Spec Issues. 2009;2009(1):108.

    Google ScholarĀ 

  88. Sharma R, Cakar Z, Agarwal A. TUNEL assay by benchtop flow cytometer in clinical laboratories. In: A Clinicianā€™s guide to sperm DNA and chromatin damage: Springer, Cham; 2018. p. 103ā€“18.

    ChapterĀ  Google ScholarĀ 

  89. Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380ā€“6.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  90. Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33(2):291ā€“300.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  91. Ribeiro S, Sharma R, Gupta S, Cakar Z, De Geyter C, Agarwal A. Interā€and intraā€laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology. 2017;5(3):477ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  92. Moskovtsev SI, Jarvi K, Mullen JBM, Cadesky KI, Hannam T, Lo KC. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93(4):1142ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  93. Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20(1):226ā€“30.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  94. Esteves SC, Agarwal A, Cho C-L, Majzoub A. A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Transl Androl Urol. 2017;6(Suppl 4):S734.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  95. SpanĆ² M, Bonde JP, HjĆøllund HI, Kolstad HA, Cordelli E, Leter G, et al. Sperm chromatin damage impairs human fertility. Fertil Steril. 2000;73(1):43ā€“50.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  96. Muriel L, Meseguer M, FernĆ”ndez JL, Alvarez J, RemohĆ­ J, Pellicer A, et al. Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod. 2005;21(3):738ā€“44.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  97. Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17(12):3122ā€“8.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Rilcheva VS, Ayvazova NP, Ilieva LO, Ivanova SP, Konova EI. Sperm DNA integrity test and assisted reproductive technology (art) outcome. J Biomed Clin Res. 2016;9(1):21ā€“9.

    ArticleĀ  Google ScholarĀ 

  99. Cissen M, van Wely M, Scholten I, Mansell S, de Bruin JP, Mol BW, et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0165125.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  100. Simon L, Brunborg G, Stevenson M, Lutton D, McManus J, Lewis SE. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod. 2010;25(7):1594ā€“608.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  101. Morris ID. Sperm DNA damage and cancer treatment. Int J Androl. 2002;25(5):255ā€“61.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  102. Virro M, Evenson D. Sperm chromatin structure assay (SCSAĀ®) related to blastocyst rate, pregnancy rate, and spontaneous abortion in IVF and ICSI cycles. Fertil Steril. 2003;79:16.

    ArticleĀ  Google ScholarĀ 

  103. Mohammad HN-E, Mohammad S, Shahnaz R, Maryam A, Shahla R, Fariba M, et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online. 2005;11(2):198ā€“205.

    ArticleĀ  Google ScholarĀ 

  104. Simon L, Proutski I, Stevenson M, Jennings D, McManus J, Lutton D, et al. Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod Biomed Online. 2013;26(1):68ā€“78.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  105. Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  106. Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908ā€“17.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  107. Panner Selvam MK, Agarwal A. A systemic review on sperm DNA fragmentation in male factor infertility: laboratory assessment. Arab J Urol. 2018;16(1):65ā€“76.

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Agarwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Panner Selvam, M.K., Sengupta, P., Agarwal, A. (2020). Sperm DNA Fragmentation and Male Infertility. In: Arafa, M., Elbardisi, H., Majzoub, A., Agarwal, A. (eds) Genetics of Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-37972-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37972-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37971-1

  • Online ISBN: 978-3-030-37972-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation