Genomics and Molecular Markers for Rice Grain Quality: A Review

  • Chapter
  • First Online:
The Future of Rice Demand: Quality Beyond Productivity

Abstract

Rice grain quality is a benchmark of rice breeding success. Current rice breeding programs consider grain characteristics that are preferred by consumers in the rice value chain. Specific traits of quality that suit the demands of stakeholders must be targeted before, during and after breeding of new varieties. Therefore, screening tools that are environmentally independent, cheap, robust and easy to use, such as molecular markers, are needed to facilitate timely and accurate selection of traits. As a multifaceted overall phenotype and consisting of several parameters ranging from physical, textural, aroma and increasingly nutritional properties, the selection for quality has not only become about which trait(s) to focus on but is rather an issue of the combination of traits that can be incorporated into a dream variety. The more traits that are available, the more markers we need to capture these traits and feed them into the breeding and selection pipelines. This chapter reviews progress made on genomics and the molecular markers developed for quality traits of rice grains. In addition, this chapter presents the increasing need for novel phenotypes in the form of metabolites that can be traced back to the genome of rice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn SN, Bollich CN, Tanksley SD (1992) RFLP tagging of a gene for aroma in rice. Theor Appl Genet 84:825–828

    Article  CAS  PubMed  Google Scholar 

  • Allahgholipour M, Ali AJ, Alinia F, Nagamine T, Kojima Y (2006) Relationship between rice grain amylose and pasting properties for breeding better quality rice varieties. Plant Breed 125:357–362

    Article  CAS  Google Scholar 

  • Amarawathi Y, Singh R, Singh AK, Singh VP, Mohapatra T, Sharma TR, Singh NK (2008) Map** of quantitative trait loci for basmati quality traits in rice (Oryza sativa L.). Mol Breed 21:49–65

    CAS  Google Scholar 

  • Bao J, Kong X, **e J, Xu L (2004) Analysis of genotypic and environmental effects on rice starch: Apparent amylose content, pasting viscosity, and gel texture. J Agric Food Chem 52:6010–6016

    Article  CAS  PubMed  Google Scholar 

  • Blazek J, Copeland L (2008) Pasting and swelling properties of wheat flour and starch in relation to amylose content. Carbohydr Polym 71:380–387

    Article  CAS  Google Scholar 

  • Bradbury LM, Gillies SA, Brushett DJ, Waters DL, Henry RJ (2008) Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. Plant Mol Biol 68:439–449

    Article  CAS  PubMed  Google Scholar 

  • Bradbury LMT, Fitzgerald TL, Henry RJ, ** Q, Waters DLE (2005a) The gene for fragrance in rice. Plant Biotechnol J 3:363–370

    Article  CAS  PubMed  Google Scholar 

  • Bradbury LMT, Henry RJ, ** Q, Reinke RF, Waters DLE (2005b) A perfect marker for fragrance genoty** in rice. Mol Breed 16:279–283

    Article  CAS  Google Scholar 

  • Buléon A, Colonna P, Planchot V, Ball S (1998) Starch granules: structure and biosynthesis. Int J Biol Macromol 23:85–112

    Article  PubMed  Google Scholar 

  • Buttery RG, Ling LC, Juliano BO, Turnbaugh JG (1983) Cooked rice aroma and 2-acetyl-1-pyrroline. J Agric Food Chem 31:823–826

    Article  CAS  Google Scholar 

  • Calingacion M, Mumm R, Tan K, Quiatchon-Baeza L, Concepcion JCT, Hageman JA, Prakash S, Fitzgerald M, Hall RD (2017) A multidisciplinary phenoty** and genoty** analysis of a map** population enables quality to be combined with yield in rice. Front Mol Biosci 4:1–16

    Article  CAS  Google Scholar 

  • Calingacion MN, Fang L, Quiatchon-Baeza L, Mumm R, Riedel A, Hall RD, Fitzgerald MA (2015) Delving deeper into technological innovations to understand differences in rice quality. Rice 8:6

    Article  PubMed Central  Google Scholar 

  • Calingacion MN, Laborte A, Nelson A, Resurreccion A, Concepcion JCT, Daygon VD, Mumm R, Reinke R, Dipti S, Bassinello PZ (2014) Diversity of global rice markets and the science required for consumer-targeted rice breeding. PLoS One 9:e85106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanagh C, Morell M, Mackay I, Powell W (2008) From mutations to MAGIC: resources for gene discovery, validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    Article  CAS  PubMed  Google Scholar 

  • Champagne E, Bett-Garber K, McClung A, Bergman C (2004) Sensory characteristics of diverse rice cultivars as influenced by genetic and environmental factors. Cereal Chem J 81:237–243

    Article  CAS  Google Scholar 

  • Champagne ET, Bett-Garber KL, Fitzgerald MA, Grimm CC, Lea J, Ohtsubo KI, Jongdee S, **e L, Bassinello PZ, Resurreccion A, Ahmad R, Habibi F, Reinke R (2010) Important sensory properties differentiating premium rice varieties. Rice 3:270–281

    Article  Google Scholar 

  • Champagne ET, Bett KL, Vinyard BT, McClung AM, Barton FE II, Moldenhauer K, Linscombe S, McKenzie K (1999) Correlation between cooked rice texture and rapid visco analyser measurements. Cereal Chem 76:764–771

    Article  CAS  Google Scholar 

  • Chen M-H, Bergman C, Pinson S, Fjellstrom R (2008a) Waxy gene haplotypes: associations with apparent amylose content and the effect by the environment in an international rice germplasm collection. J Cereal Sci 47:536–545

    Article  CAS  Google Scholar 

  • Chen M-H, Bergman CJ, Pinson SRM, Fjellstrom RG (2008b) Waxy gene haplotypes: associations with pasting properties in an international rice germplasm collection. J Cereal Sci 48:781–788

    Article  CAS  Google Scholar 

  • Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M (2008c) Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. Plant Cell 20:1850–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng FM, Zhong LJ, Wang F, Zhang GP (2005) Differences in cooking and eating properties between chalky and translucent parts in rice grains. Food Chem 90:39–46

    Article  CAS  Google Scholar 

  • Cobb JN, Juma RU, Biswas PS, Arbelaez JD, Rutkoski J, Atlin G, Hagen T, Quinn M, Ng EH (2019) Enhancing the rate of genetic gain in public-sector plant breeding programs: lessons from the breeder’s equation. Theor Appl Genet 132:627–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Collard BCY, Beredo JC, Lenaerts B, Mendoza R, Santelices R, Lopena V, Verdeprado H, Raghavan C, Gregorio GB, Vial L, Demont M, Biswas PS, Iftekharuddaula KM, Rahman MA, Cobb JN, Islam MR (2017) Revisiting rice breeding methods – evaluating the use of rapid generation advance (RGA) for routine rice breeding. Plant Prod Sci 20:337–352

    Article  Google Scholar 

  • Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) map** and marker-assisted selection for crop improvement: The basic concepts. Euphytica 142:169–196

    Article  CAS  Google Scholar 

  • Concepcion JCT, Ouk M, Zhao D, Fitzgerald MA (2015) The need for new tools and investment to improve the accuracy of selecting for grain quality in rice. Field Crop Res 182:60–67

    Article  Google Scholar 

  • Concepcion JCT, Ouk S, Ouk M, Fitzgerald MA (2019) Map** quantitative traits for grain physical and textural quality in Cambodian Jasmine rice PRD. Euphytica 215:135

    Article  CAS  Google Scholar 

  • Concepcion JCT, Ouk S, Riedel A, Calingacion M, Zhao D, Ouk M, Garson MJ, Fitzgerald MA (2018) Quality evaluation, fatty acid analysis and untargeted profiling of volatiles in Cambodian rice. Food Chem 240:1014–1021

    Article  CAS  PubMed  Google Scholar 

  • Cuevas RP, Daygon VD, Corpuz HM, Nora L, Reinke RF, Waters DLE, Fitzgerald MA (2010) Melting the secrets of gelatinisation temperature in rice. Funct Plant Biol 37:439–447

    Article  CAS  Google Scholar 

  • Cuevas RPO, Domingo CJ, Sreenivasulu N (2018) Multivariate-based classification of predicting cooking quality ideotypes in rice (Oryza sativa L.) indica germplasm. Rice 11:56

    Article  PubMed  PubMed Central  Google Scholar 

  • Daygon VD, Calingacion M, Forster L, Voss J, Schwartz B, Ovenden B, Alonso D, McCouch S, Garson MJ, Fitzgerald MA (2017) Metabolomics and genomics combine to unravel the pathway for the presence of fragrance in rice. Sci Rep 7:8767–8767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daygon VD, Prakash S, Calingacion M, Riedel A, Ovenden B, Snell P, Mitchell J, Fitzgerald MA (2016) Understanding the Jasmine phenotype of rice through metabolite profiling and sensory evaluation. Metabolomics 12:1–15

    Article  CAS  Google Scholar 

  • Denis M, Bouvet J-M (2013) Efficiency of genomic selection with models including dominance effect in the context of Eucalyptus breeding. Tree Genet Genomes 9:37–51

    Article  Google Scholar 

  • Edwards S, Buntjer J, Jackson R, Bentley A, Lage J, Byrne E, Burt C, Jack P, Berry S, Flatman E, Poupard B, Smith S, Hayes C, Gaynor R, Gorjanc G, Howell P, Ober E, Mackay I (2019) The effects of training population design on genomic prediction accuracy in wheat. Theor Appl Genet:1–10

    Google Scholar 

  • Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CRH, Russell DW, Seyama Y, Shaw W, Shimizu T, Spener F, Van Meer G, Vannieuwenhze MS, White SH, Witztum JL, Dennis EA (2005) A comprehensive classification system for lipids. J Lipid Res 46:839–862

    Article  CAS  PubMed  Google Scholar 

  • Fahy E, Subramaniam S, Murphy RC, Nishijima M, Raetz CRH, Shimizu T, Spener F, Van Meer G, Wakelam MJO, Dennis EA (2009) Update of the LIPID MAPS comprehensive classification system for lipids. J Lipid Res 50:S9–S14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan C, **ng Y, Mao H, Lu T, Han B, Xu C, Li X, Zhang Q (2006) GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Fan C, Yu S, Wang C, **ng Y (2009) A causal C–A mutation in the second exon of GS3 highly associated with rice grain length and validated as a functional marker. Theor Appl Genet 118:465–472

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald MA, Martin M, Ward RM, Park WD, Shead HJ (2003) Viscosity of rice four: a rheological and biological study. J Agric Food Chem 51:2295–2299

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald MA, McCouch SR, Hall RD (2009) Not just a grain of rice: the quest for quality. Trends Plant Sci 14:133–139

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald MA, Resurreccion AP (2009) Maintaining the yield of edible rice in a warming world. Funct Plant Biol 36:1037–1045

    Article  Google Scholar 

  • Fu**o Y (1978) Rice lipids. Cereal Chem J 55:559–571

    CAS  Google Scholar 

  • Gezan SA, Osorio LF, Verma S, Whitaker VM (2017) An experimental validation of genomic selection in octoploid strawberry. Hortic Res 4:16070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godet MC, Buléon A, Tran V, Colonna P (1993) Structural features of fatty acid-amylose complexes. Carbohydr Polym 21:91–95

    Article  CAS  Google Scholar 

  • Godet MC, Tran V, Colonna P, Buleon A, Pezolet M (1995) Inclusion/exclusion of fatty acids in amylose complexes as a function of the fatty acid chain length. Int J Biol Macromol 17:405–408

    Article  CAS  PubMed  Google Scholar 

  • Gouy M, Rousselle Y, Bastianelli D, Lecomte P, Bonnal L, Roques D, Efile J-C, Rocher S, Daugrois J, Toubi L, Nabeneza S, Hervouet C, Telismart H, Denis M, Thong-Chane A, Glaszmann JC, Hoarau J-Y, Nibouche S, Costet L (2013) Experimental assessment of the accuracy of genomic selection in sugarcane. Theor Appl Genet 126:2575–2586

    Article  CAS  PubMed  Google Scholar 

  • Hinge VR, Patil HB, Nadaf AB (2016) Aroma volatile analyses and 2AP characterization at various developmental stages in basmati and non-basmati scented rice (Oryza sativa L.) cultivars. Rice 9

    Google Scholar 

  • Huang BE, Verbyla KL, Verbyla AP, Raghavan C, Singh VK, Gaur P, Leung H, Varshney RK, Cavanagh CR (2015) MAGIC populations in crops: current status and future prospects. Theor Appl Genet 128:999–1017

    Article  PubMed  Google Scholar 

  • Huang X, Wei X, Sang T, Zhao Q, Feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li M, Fan D, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng Q, Liu K, Huang T, Zhou T, **g Y, Li W, Lin Z, Buckler ES, Qian Q, Zhang Q-F, Li J, Han B (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    Article  CAS  PubMed  Google Scholar 

  • International Rice Genome Sequencing Project (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  CAS  Google Scholar 

  • Jannink J-L, Lorenz AJ, Iwata H (2010) Genomic selection in plant breeding: from theory to practice. Brief Funct Genomics 9:166–177

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Guo H, Kong W, Chandnani R, Shuang L-S, Paterson AH (2016) Application of genoty** by sequencing technology to a variety of crop breeding programs. Plant Sci 242:14–22

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Zhu P, Sui Z, Bao J (2015) Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chem 172:433–440

    Article  CAS  PubMed  Google Scholar 

  • Kovach MJ, Calingacion MN, Fitzgerald MA, McCouch SR (2009) The origin and evolution of fragrance in rice (Oryza sativa L.). Proc Natl Acad Sci U S A 106:14444–14449

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumagai M, Tanaka T, Ohyanagi H, Hsing Y-IC, Itoh T (2018) Genome Sequences of Oryza Species. In: Sasaki T, Ashikari M (eds) Rice genomics, genetics and breeding. Springer Singapore, Singapore

    Google Scholar 

  • Lado B, Vázquez D, Quincke M, Silva P, Aguilar I, Gutiérrez L (2018) Resource allocation optimization with multi-trait genomic prediction for bread wheat (Triticum aestivum L.) baking quality. Theor Appl Genet 131:2719–2731

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Prakash S, Nicholson TM, Fitzgerald MA, Gilbert RG (2016) The importance of amylose and amylopectin fine structure for textural properties of cooked rice grains. Food Chem 196:702–711

    Article  CAS  PubMed  Google Scholar 

  • Li J-Y, Wang J, Zeigler RS (2014) The 3,000 rice genomes project: new opportunities and challenges for future rice research. GigaScience 3:1–3

    Article  CAS  Google Scholar 

  • Lisle AJ, Martin M, Fitzgerald MA (2000) Chalky and translucent rice grains differ in starch composition and structure and cooking properties. Cereal Chem 77:627–632

    Article  CAS  Google Scholar 

  • Lou J, Chen L, Yue G, Lou Q, Mei H, ** of grain quality traits in rice. J Cereal Sci 50:145–151

    Article  CAS  Google Scholar 

  • Mahattanatawee K, Rouseff RL (2014) Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC–Olfactometry and GC–PFPD. Food Chem 154:1–6

    Article  CAS  PubMed  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao Y, Zhang H, Xu N, Zhang B, Gou F, Zhu J-K (2013) Application of the CRISPR-Cas system for efficient genome engineering in plants. Mol Plant 6:2008–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCouch SR, Zhao K, Wright M, Tung C-W, Ebana K, Thomson M, Reynolds A, Wang D, Declerck G, Ali ML, McClung A, Eizenga G, Bustamante C (2010) Development of genome-wide SNP assays for rice. Breed Sci 60:524–535

    Article  Google Scholar 

  • Meng L, Guo L, Ponce K, Zhao X, Ye G (2016) Characterization of three Indica Rice multiparent advanced generation intercross (MAGIC) populations for quantitative trait loci identification. Plant Genome 9

    Google Scholar 

  • Meullenet J-F, Champagne ET, Bett KL, McClung AM, Kauffmann D (2000) Instrumental assessment of cooked rice texture characteristics: a method for breeders. Cereal Chem J 77:512–517

    Article  CAS  Google Scholar 

  • Meuwissen THE, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michel S, Kummer C, Gallee M, Hellinger J, Ametz C, Akgöl B, Epure D, Löschenberger F, Buerstmayr H (2018) Improving the baking quality of bread wheat by genomic selection in early generations. Theor Appl Genet 131:477–493

    Article  CAS  PubMed  Google Scholar 

  • Minten, B., Murshid, K. A. S. & Reardon, T (2011) The quiet revolution in agrifood value chains in Asia: the case of increasing quality in rice markets in Bangladesh. IFPRI - Discussion Papers, vi + 25 pp.

    Google Scholar 

  • Misra G, Badoni S, Domingo CJ, Cuevas RPO, Llorente C, Mbanjo EGN, Sreenivasulu N (2018) Deciphering the genetic architecture of cooked rice texture. Front Plant Sci 9:1405–1405

    Article  PubMed  PubMed Central  Google Scholar 

  • Morais Júnior OP, Batista Duarte J, Breseghello F, Coelho ASG, Borba TCO, Aguiar J, Neves PCF, Morais OP (2017) Relevance of additive and nonadditive genetic relatedness for genomic prediction in rice population under recurrent selection breeding. Genet Mol Res 16:1–16

    Google Scholar 

  • Morais Júnior OP, Breseghello F, Duarte JB, Coelho ASG, Borba TCO, Aguiar JT, Neves PCF, Morais OP (2018) Assessing prediction models for different traits in a rice population derived from a recurrent selection program. Crop Sci 58:2347–2359

    Article  CAS  Google Scholar 

  • Mullis, K. B., Erlich, H. A., Arnheim, N., Horn, G. T., Saiki, R. K. & Scharf, S. J. 1987. One of the first polymerase chain reaction (PCR) patents. Google Patents.

    Google Scholar 

  • Mumm R, Hageman JA, Calingacion MN, De Vos RCH, Jonker HH, Erban A, Kopka J, Hansen TH, Laursen KH, Schjoerring JK, Ward JL, Beale MH, Jongee S, Rauf A, Habibi F, Indrasari SD, Sakhan S, Ramli A, Romero M, Reinke RF, Ohtsubo K, Boualaphanh C, Fitzgerald MA, Hall RD (2016) Multi-platform metabolomics analyses of a broad collection of fragrant and non-fragrant rice varieties reveals the high complexity of grain quality characteristics. Metabolomics 12:38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng B, Wang LQ, Fan CC, Jiang GH, Luo LJ, Li YB, He YQ (2014) Comparative map** of chalkiness components in rice using five populations across two environments. BMC Genet 15:14

    Article  CAS  Google Scholar 

  • Ponce KS, Ye G, Zhao X (2018) QTL identification for cooking and eating quality in indica rice using multi-parent advanced generation intercross (MAGIC) population. Front Plant Sci 9:1–9

    Article  Google Scholar 

  • Purugganan M (2014) An evolutionary genomic tale of two rice species. Nat Genet 46:931–932

    Article  CAS  PubMed  Google Scholar 

  • Rasheed A, Hao Y, ** platforms: progress, challenges, and perspectives. Mol Plant 10:1047–1064

    Article  CAS  PubMed  Google Scholar 

  • Resurreccion AP, Juliano BO (1975) Fatty acid composition of rice oils. J Sci Food Agric 26:437–439

    Article  CAS  PubMed  Google Scholar 

  • Roferos, L. T., Butardo JR, V. M., Fitzgerald, M. A. & Juliano, B. O. 2008. Association between alleles of the Waxy gene and traits of grain quality in Philippine seed board rice varieties. Philipp Agric Sci, 91, 335.

    Google Scholar 

  • Shan Q, Wang Y, Li J, Gao C (2014) Genome editing in rice and wheat using the CRISPR/Cas system. Nat Protoc 9:2395

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, ** JJ, Qiu J-L, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686

    Article  CAS  PubMed  Google Scholar 

  • Shevchenko A, Simons K (2010) Lipidomics: coming to grips with lipid diversity. Nat Rev Mol Cell Biol 11:593–598

    Article  CAS  PubMed  Google Scholar 

  • Shi W, Yang Y, Chen S, Xu M (2008) Discovery of a new fragrance allele and the development of functional markers for the breeding of fragrant rice varieties. Mol Breed 22:185–192

    Article  CAS  Google Scholar 

  • Shufen C, Yicong C, Baobing F, Guiai J, Zhonghua S, Ju L, Shaoqing T, Jianlong W, Peisong H, **ang** W (2019) Editing of rice isoamylase gene ISA1 provides insights into its function in starch formation. Rice Sci 26:77–87

    Article  Google Scholar 

  • Song X-J, Huang W, Shi M, Zhu M-Z, Lin H-X (2007) A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39:623–630

    Article  CAS  PubMed  Google Scholar 

  • Spindel J, Begum H, Akdemir D, Virk P, Collard B, Redoña E, Atlin G, Jannink J-L, McCouch SR (2015) genomic selection and association map** in rice (Oryza sativa): effect of trait genetic architecture, training population composition, marker number and statistical model on accuracy of rice genomic selection in elite, tropical rice breeding lines. PLoS Genet 11:e1004982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sud M, Fahy E, Cotter D, Brown A, Dennis EA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Subramaniam S (2007) LMSD: LIPID MAPS structure database. Nucleic Acids Res 35:D527–D532

    Article  CAS  PubMed  Google Scholar 

  • Suela MM, Lima LP, Azevedo CF, Resende MDVD, Nascimento M, SILVA FFE (2019) Combined index of genomic prediction methods applied to productivity. Ciência Rural 49

    Google Scholar 

  • Sun Y, Jiao G, Liu Z, Zhang X, Li J, Guo X, Du W, Du J, Francis F, Zhao Y, **a L (2017) Generation of high-amylose rice through CRISPR/Cas9-mediated targeted mutagenesis of starch branching enzymes. Front Plant Sci 8:1–15

    Google Scholar 

  • Sverrisdóttir E, Sundmark EHR, Johnsen HØ, Kirk HG, Asp T, Janss L, Bryan G, Nielsen KL (2018) The value of expanding the training population to improve genomic selection models in tetraploid potato. Front Plant Sci 9:1–4

    Article  Google Scholar 

  • Takano-Kai N, Jiang H, Kubo T, Sweeney M, Matsumoto T, Kanamori H, Padhukasahasram B, Bustamante C, Yoshimura A, Doi K, McCouch S (2009) Evolutionary history of GS3, a gene conferring grain length in rice. Genetics 182:1323–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang L, Mao B, Li Y, Lv Q, Zhang L, Chen C, He H, Wang W, Zeng X, Shao Y, Pan Y, Hu Y, Peng Y, Fu X, Li H, **a S, Zhao B (2017) Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cdaccumulating indica rice without compromising yield. Sci Rep 7:14438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanksley SD (1993) Map** polygenes. Annu Rev Genet 27:205–233

    Article  CAS  PubMed  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genoty** to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Thomson MJ, Zhao K, Wright M, McNally K, Rey J, Tung C-W, Reynolds A, Scheffler B, Eizenga G, McClung A, Kim H, Ismail A, De Ocampo M, Mojica C, Reveche MY, Dilla-Ermita C, Mauleon R, Leung H, Bustamante C, McCouch S (2012) High-throughput single nucleotide polymorphism genoty** for breeding applications in rice using the BeadXpress platform. Mol Breed 29:875–886

    Article  CAS  Google Scholar 

  • Tran NA, Daygon VD, Resurreccion AP, Cuevas RP, Corpuz HM, Fitzgerald MA (2011) A single nucleotide polymorphism in the Waxy gene explains a significant component of gel consistency. Theor Appl Genet 123:519–525

    Article  CAS  PubMed  Google Scholar 

  • United Nations, D. O. E. A. S. A., Population Division 2017. World population prospects: the 2017 revision, key findings and advance tables. Working paper No. ESA/P/WP/248.

    Google Scholar 

  • Varavinit S, Shobsngob S, Varanyanond W, Chinachoti P, Naivikul O (2003) Effect of amylose content on gelatinization, retrogradation and pasting properties of flours from different cultivars of thai rice. Starch - Stärke 55:410–415

    Article  CAS  Google Scholar 

  • Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 27:522–530

    Article  CAS  PubMed  Google Scholar 

  • Wan X, Weng J, Zhai H, Wang J, Lei C, Liu X, Guo T, Jiang L, Su N, Wan J (2008) Quantitative trait loci (QTL) analysis for rice grain width and fine map** of an identified QTL allele gw-5 in a recombination hotspot region on chromosome 5. Genetics 179:2239–2252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Chen S, Yu S (2011) Functional markers developed from multiple loci in GS3 for fine marker-assisted selection of grain length in rice. Theor Appl Genet 122:905–913

    Article  PubMed  Google Scholar 

  • Wang J, Chapman SC, Bonnett DG, Rebetzke GJ, Crouch J (2007) Application of population genetic theory and simulation models to efficiently pyramid multiple genes via marker-assisted selection. Crop Sci 47:582–588

    Article  Google Scholar 

  • Waters DLE, Henry RJ, Reinke RF, Fitzgerald MA (2006) Gelatinization temperature of rice explained by polymorphisms in starch synthase. Plant Biotechnol J 4:115–122

    Article  CAS  PubMed  Google Scholar 

  • Weng J, Gu S, Wan X, Gao H, Guo T, Su N, Lei C, Zhang X, Cheng Z, Guo X, Wang J, Jiang L, Zhai H, Wan J (2008) Isolation and initial characterization of GW5, a major QTL associated with rice grain width and weight. Cell Res 18:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Xu F, Sun C, Huang Y, Chen Y, Tong C, Bao J (2015) QTL map** for rice grain quality: a strategy to detect more QTLs within sub-populations. Mol Breed 35:105

    Article  Google Scholar 

  • Yamanaka S, Nakamura I, Watanabe KN, Sato Y-I (2004) Identification of SNPs in the waxy gene among glutinous rice cultivars and their evolutionary significance during the domestication process of rice. Theor Appl Genet 108:1200–1204

    Article  CAS  PubMed  Google Scholar 

  • Yang Q-Q, Zhang C-Q, Chan M-L, Zhao D-S, Chen J-Z, Wang Q, Li Q-F, Yu H-X, Gu M-H, Sun SS-M, Liu Q-Q (2016) Biofortification of rice with the essential amino acid lysine: molecular characterization, nutritional evaluation, and field performance. J Exp Bot 67:4285–4296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu G, Olsen KM, Schaal BA (2011) Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L. Mol Biol Evol 28:659–671

    Article  CAS  PubMed  Google Scholar 

  • Zeng Y, Ji Z, Wen Z, Liang Y, Yang C (2016) Combination of eight alleles at four quantitative trait loci determines grain length in rice. PLoS One 11:e0150832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Zhang H, Botella JR, Zhu J-K (2018) Generation of new glutinous rice by CRISPR/Cas9-targeted mutagenesis of the Waxy gene in elite rice varieties. J Integr Plant Biol 60:369–375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Ober U, Erbe M, Zhang H, Gao N, He J, Li J, Simianer H (2014) Improving the accuracy of whole genome prediction for complex traits using the results of genome wide association studies. PLoS One 9:e93017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, Daygon VD, McNally KL, Hamilton RS, **e F, Reinke RF, Fitzgerald MA (2015) Identification of stable QTLs causing chalk in rice grains in nine environments. Theor Appl Genet:1–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeanaflor Crystal T. Concepcion .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Concepcion, J.C.T., Proud, C., Fitzgerald, M.A. (2020). Genomics and Molecular Markers for Rice Grain Quality: A Review. In: Costa de Oliveira, A., Pegoraro, C., Ebeling Viana, V. (eds) The Future of Rice Demand: Quality Beyond Productivity. Springer, Cham. https://doi.org/10.1007/978-3-030-37510-2_18

Download citation

Publish with us

Policies and ethics

Navigation