Ten False Beliefs About Mechanical Ventilation in Patients with Brain Injury

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2020

Abstract

Neurocritically ill patients often receive mechanical ventilation. The lung and the brain can affect each other, thus increasing the risk of develo** secondary damage, if not properly managed. Ventilator settings are not clear in this group of patients; traditionally, because of the risk of intracranial hypertension, high tidal volume and low levels of positive end-expiratory pressure (PEEP) are applied, whereas rescue strategies such as recruitment maneuvers, prone position, and extracorporeal membrane oxygenation (ECMO) are precluded. However, recent evidence is challenging these concepts. Findings in patients without acute respiratory distress syndrome (ARDS) suggest the application of lower tidal volumes (6 ml/kg predicted body weight [PBW]), in order to reduce the risk of develo** ventilator-induced lung injury (VILI) and boost the inflammatory response. PEEP is a key component of mechanical ventilation settings to guarantee alveolar recruitment and to enhance oxygen arterial saturation. It also improves brain tissue oxygen pressure without significantly affecting intracranial pressure or cerebral perfusion. Likewise, recruitment maneuvers should be taken into consideration as rescue treatment when appropriate. Preventive hyperventilation (carbon dioxide partial pressure [PaCO2] ≤25 mmHg) should be avoided. Tracheostomy is frequently performed in this group of patients; the ideal timing of tracheostomy is not clear yet although early tracheostomy seems to have some clinical advantages. In selected cases of severe respiratory failure, prone position and ECMO can also be taken into consideration. The aim of this chapter is to debulk ten false myths concerning ventilatory management in patients with brain injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Asehnoune K, Seguin P, Lasocki S, et al. Extubation success prediction in a multicentric cohort of patients with severe brain injury. Anesthesiology. 2017;127:338–46.

    Article  PubMed  Google Scholar 

  2. Algera AG, Pisani L, Bergmans DCJ, et al. RELAx - REstricted versus liberal positive end-expiratory pressure in patients without ARDS: protocol for a randomized controlled trial. Trials. 2018;19:272.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Frutos-Vivar F, Esteban A, Apezteguía C, et al. Outcome of mechanically ventilated patients who require a tracheostomy. Crit Care Med. 2005;33:290–8.

    Article  PubMed  Google Scholar 

  4. Tejerina E, Pelosi P, Muriel A, et al. Association between ventilatory settings and development of acute respiratory distress syndrome in mechanically ventilated patients due to brain injury. J Crit Care. 2017;38:341–5.

    Article  PubMed  Google Scholar 

  5. Pelosi P, Rocco PRM. The lung and the brain: a dangerous cross-talk. Crit Care. 2011;15:168.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Samary CS, Ramos AB, Maia LA, et al. Focal ischemic stroke leads to lung injury and reduces alveolar macrophage phagocytic capability in rats. Crit Care. 2018;22:249.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Samary CS, Pelosi P, Leme Silva P, Rocco PRM. Immunomodulation after ischemic stroke: potential mechanisms and implications for therapy. Crit Care. 2016;20:391.

    Article  Google Scholar 

  8. Quilez ME, Fuster G, Villar J, et al. Injurious mechanical ventilation affects neuronal activation in ventilated rats. Crit Care. 2011;15:R124.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vincent JL, Taccone FS, He X. Harmful effects of hyperoxia in postcardiac arrest, sepsis, traumatic brain injury, or stroke: the importance of individualized oxygen therapy in critically ill patients. Can Respir J. 2017;2017:2834956.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Micarelli A, Jacobsson H, Larsson SA, Jonsson C, Pagani M. Neurobiological insight into hyperbaric hyperoxia. Acta Physiol. 2013;209:69–76.

    Article  CAS  Google Scholar 

  11. Brandi G, Stocchetti N, Pagnamenta A, Stretti F, Steiger P, Klinzing S. Cerebral metabolism is not affected by moderate hyperventilation in patients with traumatic brain injury. Crit Care. 2019;23:45.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Taher A, Pilehvari Z, Poorolajal J, Aghajanloo M. Effects of normobaric hyperoxia in traumatic brain injury: a randomized controlled clinical trial. Trauma Mon. 2016;21:e26772.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Muizelaar JP, Marmarou A, Ward JD, et al. Adverse effects of prolonged hyperventilation in patients with severe head injury: a randomized clinical trial. J Neurosurg. 1991;75:731–9.

    Article  PubMed  CAS  Google Scholar 

  14. Putensen C, Theuerkauf N, Zinserling J, Wrigge H, Pelosi P. Meta-analysis: ventilation strategies and outcomes of the acute respiratory distress syndrome and acute lung injury. Ann Intern Med. 2009;151:566–76.

    Article  PubMed  Google Scholar 

  15. Mascia L, Zavala E, Bosma K, et al. High tidal volume is associated with the development of acute lung injury after severe brain injury: an international observational study. Crit Care Med. 2007;35:1815–20.

    Article  PubMed  Google Scholar 

  16. Pelosi P, Ferguson ND, Frutos-Vivar F, et al. Management and outcome of mechanically ventilated neurologic patients. Crit Care Med. 2011;39:1482–92.

    Article  PubMed  Google Scholar 

  17. Krebs J, Tsagogiorgas C, Pelosi P, et al. Open lung approach with low tidal volume mechanical ventilation attenuates lung injury in rats with massive brain damage. Crit Care. 2014;18:R59.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Simonis FD, Serpa Neto A, Binnekade JM, et al. Effect of a low vs. intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS. JAMA. 2018;320:1872.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Pelosi P, Rocco PRM, Gama de Abreu M. Close down the lungs and keep them resting to minimize ventilator-induced lung injury. Crit Care. 2018;22:72.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Serpa Neto A, Filho RR, Cherpanath T, et al. Associations between positive end-expiratory pressure and outcome of patients without ARDS at onset of ventilation: a systematic review and meta-analysis of randomized controlled trials. Ann Intensive Care. 2016;6:109.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lu J, Wang X, Chen M, et al. An open lung strategy in the management of acute respiratory distress syndrome: a systematic review and meta-analysis. Shock. 2017;48:43–53.

    Article  PubMed  Google Scholar 

  22. Fan E, Del Sorbo L, Goligher EC, et al. An official American Thoracic Society/European Society of intensive care medicine/society of critical care medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–63.

    Article  PubMed  Google Scholar 

  23. Pham T, Serpa Neto A, Pelosi P, et al. Outcomes of patients presenting with mild acute respiratory distress syndrome: insights from the LUNG SAFE study. Anesthesiology. 2019;130:263–83.

    Article  PubMed  Google Scholar 

  24. Caricato A, Conti G, Della Corte F, et al. Effects of PEEP on the intracranial system of patients with head injury and subarachnoid hemorrhage: the role of respiratory system compliance. J Trauma. 2005;58:571–6.

    Article  PubMed  Google Scholar 

  25. Korovesi I, Papadomichelakis E, Orfanos S, et al. Exhaled breath condensate in mechanically ventilated brain-injured patients with no lung injury or sepsis. Anesthesiology. 2011;114:1118–29.

    Article  PubMed  Google Scholar 

  26. Nemer SN, Caldeira JB, Santos RG, et al. Effects of positive end-expiratory pressure on brain tissue oxygen pressure of severe traumatic brain injury patients with acute respiratory distress syndrome: a pilot study. J Crit Care. 2015;30:1263–6.

    Article  PubMed  Google Scholar 

  27. Mascia L, Grasso S, Fiore T, Bruno F, Berardino M, Ducati A. Cerebro-pulmonary interactions during the application of low levels of positive end-expiratory pressure. Intensive Care Med. 2005;31:373–9.

    Article  PubMed  Google Scholar 

  28. Hodgson C, Goligher E, Young M, et al. Recruitment manoeuvres for adults with acute respiratory distress syndrome. Cochrane Database Syst Rev. 2016;17:CD006667.

    Google Scholar 

  29. Kang H, Yang H, Tong Z. Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation: a systematic review and meta-analysis. J Crit Care. 2019;50:1–10.

    Article  PubMed  Google Scholar 

  30. Bein T, Kuhr L-P, Bele S, Ploner F, Keyl C, Taeger K. Lung recruitment maneuver in patients with cerebral injury: effects on intracranial pressure and cerebral metabolism. Intensive Care Med. 2002;28:554–8.

    Article  PubMed  CAS  Google Scholar 

  31. Flexman AM, Gooderham PA, Griesdale DE, Argue R, Toyota B. Effects of an alveolar recruitment maneuver on subdural pressure, brain swelling, and mean arterial pressure in patients undergoing supratentorial tumour resection: a randomized crossover study. Can J Anesth. 2017;64:626–33.

    Article  PubMed  Google Scholar 

  32. Nemer SN, Caldeira JB, Azeredo LM, et al. Alveolar recruitment maneuver in patients with subarachnoid hemorrhage and acute respiratory distress syndrome: a comparison of 2 approaches. J Crit Care. 2011;26:22–7.

    Article  PubMed  Google Scholar 

  33. Zhang X, Yang Z, Wang Q, Fan H. Impact of positive end-expiratory pressure on cerebral injury patients with hypoxemia. Am J Emerg Med. 2011;29:699–703.

    Article  PubMed  Google Scholar 

  34. Vaporidi K, Akoumianaki E, Telias I, Goligher EC, Brochard L, Georgopoulos D. Respiratory drive in critically ill patients: pathophysiology and clinical implications. Am J Respir Crit Care Med. 2020;201:20–32.

    Article  PubMed  Google Scholar 

  35. Aragón RE, Proaño A, Mongilardi N, et al. Sedation practices and clinical outcomes in mechanically ventilated patients in a prospective multicenter cohort. Crit Care. 2019;23:130.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Chiumello D, Pelosi P, Calvi E, Bigatello LM, Gattinoni L. Different modes of assisted ventilation in patients with acute respiratory failure. Eur Respir J. 2002;20:925–33.

    Article  PubMed  CAS  Google Scholar 

  37. Cormio M, Portella G, Spreafico E, Mazza L, Pesenti A, Citerio G. [Role of assisted breathing in severe traumatic brain injury]. Minerva Anestesiol. 2002;68:278–284.

    Google Scholar 

  38. MacIntyre NR, Cook D, Ely EWJ, et al. Evidence-based guidelines for weaning and discontinuing ventilatory support. Chest. 2003;120:375S–95S.

    Article  Google Scholar 

  39. Boles J-M, Bion J, Connors A, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29:1033–56.

    Article  PubMed  Google Scholar 

  40. Asehnoune K, Mrozek S, Perrigault PF, et al. A multi-faceted strategy to reduce ventilation-associated mortality in brain-injured patients. The BI-VILI project: a nationwide quality improvement project. Intensive Care Med. 2017;43:957–70.

    Article  PubMed  Google Scholar 

  41. Navalesi P, Frigerio P, Moretti MP, et al. Rate of reintubation in mechanically ventilated neurosurgical and neurologic patients: evaluation of a systematic approach to weaning and extubation. Crit Care Med. 2008;36:2986–92.

    Article  PubMed  Google Scholar 

  42. Esperanza JA, Pelosi P, Blanch L. What’s new in intensive care: tracheostomy-what is known and what remains to be determined. Intensive Care Med. 2019;45:1619–21.

    Article  Google Scholar 

  43. McCredie VA, Alali AS, Scales DC, et al. Effect of early versus late tracheostomy or prolonged intubation in critically ill patients with acute brain injury: a systematic review and meta-analysis. Neurocrit Care. 2017;26:14–25.

    Article  PubMed  Google Scholar 

  44. Gessler F, Mutlak H, Lamb S, et al. The impact of tracheostomy timing on clinical outcome and adverse events in poor-grade subarachnoid hemorrhage. Crit Care Med. 2015;43:2429–38.

    Article  PubMed  Google Scholar 

  45. Bösel J, Schiller P, Hook Y, et al. Stroke-related early tracheostomy versus prolonged orotracheal intubation in neurocritical care trial (SETPOINT): a randomized pilot trial. Stroke. 2013;44:21–8.

    Article  PubMed  Google Scholar 

  46. Qureshi MSS, Shad ZS, Shoaib F, et al. Early versus late tracheostomy after decompressive craniectomy. Cureus. 2018;10:e3699.

    PubMed  PubMed Central  Google Scholar 

  47. Reinprecht A, Greher M, Wolfsberger S, Dietrich W, Illievich UM, Gruber A. Prone position in subarachnoid hemorrhage patients with acute respiratory distress syndrome: effects on cerebral tissue oxygenation and intracranial pressure. Crit Care Med. 2003;31:1831–8.

    Article  PubMed  Google Scholar 

  48. Roth C, Ferbert A, Deinsberger W, et al. Does prone positioning increase intracranial pressure? A retrospective analysis of patients with acute brain injury and acute respiratory failure. Neurocrit Care. 2014;21:186–91.

    Article  PubMed  Google Scholar 

  49. Combes A, Hajage D, Capellier G, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378:1965–75.

    Article  PubMed  Google Scholar 

  50. Robba C, Ortu A, Bilotta F, et al. Extracorporeal membrane oxygenation for adult respiratory distress syndrome in trauma patients: a case series and systematic literature review. J Trauma Acute Care Surg. 2017;82:165–73.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Battaglini, D., Pelosi, P., Robba, C. (2020). Ten False Beliefs About Mechanical Ventilation in Patients with Brain Injury. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2020. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-37323-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37323-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37322-1

  • Online ISBN: 978-3-030-37323-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation