Microcirculation in Patients with Sepsis: From Physiology to Interventions

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2020

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

  • 2111 Accesses

Abstract

Patient survival depends on determining the cause of the underlying condition and treating the pathology, as well as supportive care until restoration of normal physiology. Resuscitation guidelines have long been focused on macrohemodynamic variables, such as cardiac output, as well as indirect measures of blood flow and tissue perfusion, such as lactate. In recent years, interest has been develo** in the assessment and management of the microcirculation. The early goals of resuscitation in circulatory shock are to restore global blood flow, oxygen delivery, and organ perfusion pressure with the ultimate aim of improving microcirculatory perfusion and cellular oxygen metabolism. The aim of this chapter is to outline the principles of the microcirculation, microcirculatory dysfunction in sepsis, and therapies to improve microcirculatory function and tissue perfusion. Sepsis is characterized by macrocirculatory alterations such as relative hypovolemia, a decrease in vascular tone, myocardial depression, a heterogeneous pattern of blood flow in microcirculation, as well as the incapacity of cells to extract and adequately use oxygen. With newer and more sophisticated monitoring techniques, the microcirculation can be used to guide resuscitative efforts towards more targeted therapies. In addition to clinical examination and biochemical markers as methods of assessment, handheld vital microscopes allow direct visualization of capillaries and a number of indices and classifications have been developed which show good inter-observer reproducibility. Despite the advances in our understanding of microcirculatory dysfunction there remains a deficit in knowledge regarding how best to treat it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 106.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 139.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lipińska-Gediga M. Sepsis and septic shock – is a microcirculation a main player? Anaesthesiol Intensive Ther. 2016;48:261–5.

    Article  PubMed  Google Scholar 

  2. Spanos A, Jhanji S, Vivian-Smith A, Harris T, Pearse RM. Early microvascular changes in sepsis and severe sepsis. Shock. 2010;33:387–91.

    Article  PubMed  Google Scholar 

  3. Bateman RM, Tokunaga C, Kareco T, Dorscheid DR, Walley KR. Myocardial hypoxia-inducible HIF-1α, VEGF, and GLUT1 gene expression is associated with microvascular and ICAM-1 heterogeneity during endotoxemia. Am J Physiol Heart Circ Physiol. 2007;293:H448–56.

    Article  CAS  PubMed  Google Scholar 

  4. Donati A, Domizi R, Damiani E, Adrario E, Pelaia P, Ince C. From macrohemodynamic to the microcirculation. Crit Care Res Pract. 2013;2013:892710.

    PubMed  PubMed Central  Google Scholar 

  5. Weis S, Dickmann P, Pletz MW, Coldewey SM, Gerlach H, Bauer M. Eine neue Definition führt zu neuen Konzepten. Dtsch Arztebl Int. 2017;114:801–10.

    Google Scholar 

  6. Kanoore Edul VS, Ince C, Dubin A. What is microcirculatory shock? Curr Opin Crit Care. 2015;21:245–52.

    Article  PubMed  Google Scholar 

  7. Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19:S8.

    Article  PubMed  PubMed Central  Google Scholar 

  8. De Backer D, Donadello K, Sakr Y, et al. Microcirculatory alterations in patients with severe sepsis: impact of time of assessment and relationship with outcome. Crit Care Med. 2013;41:791–9.

    Article  PubMed  CAS  Google Scholar 

  9. Trzeciak S, McCoy JV, Dellinger RP, et al. Early increases in microcirculatory perfusion during protocol-directed resuscitation are associated with reduced multi-organ failure at 24 h in patients with sepsis. Intensive Care Med. 2008;34:2210–7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ince C, Boerma EC, Cecconi M, et al. Second consensus on the assessment of sublingual microcirculation in critically ill patients: results from a task force of the European Society of Intensive Care Medicine. Intensive Care Med. 2018;44:281–99.

    Article  PubMed  Google Scholar 

  11. Reitsma S, Slaaf DW, Vink H, Van Zandvoort MAMJ, Oude Egbrink MGA. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch. 2007;454:345–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care. 2019;23:16.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Salmon AHJ, Ferguson JK, Burford JL, et al. Loss of the endothelial glycocalyx links albuminuria and vascular dysfunction. J Am Soc Nephrol. 2012;23:1339–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mulivor AW, Lipowsky HH. Role of glycocalyx in leukocyte-endothelial cell adhesion. Am J Physiol Heart Circ Physiol. 2002;283:H1282–91.

    Article  CAS  PubMed  Google Scholar 

  15. Curry FE, Adamson RH. Endothelial glycocalyx: permeability barrier and mechanosensor. Ann Biomed Eng. 2012;40:828–39.

    Article  CAS  PubMed  Google Scholar 

  16. Steinberg BE, Goldenberg NM, Lee WL. Do viral infections mimic bacterial sepsis? The role of microvascular permeability: a review of mechanisms and methods. Antivir Res. 2012;93:2–15.

    Article  CAS  PubMed  Google Scholar 

  17. Becker BF, Jacob M, Leipert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol. 2015;80:389–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wiesinger A, Peters W, Chappell D, et al. Nanomechanics of the endothelial glycocalyx in experimental sepsis. PLoS One. 2013;8:e80905.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Anand D, Ray S, Srivastava LM, Bhargava S. Evolution of serum hyaluronan and syndecan levels in prognosis of sepsis patients. Clin Biochem. 2016;49:768–76.

    Article  CAS  PubMed  Google Scholar 

  20. Wo CC, Shoemaker WC, Appel PL, Bishop MH, Kram HB, Hardin E. Unreliability of blood pressure and heart rate to evaluate cardiac output in emergency resuscitation and critical illness. Crit Care Med. 1993;21:218–23.

    Article  CAS  PubMed  Google Scholar 

  21. Lima A, Bakker J. Clinical assessment of peripheral circulation. Curr Opin Crit Care. 2015;21:226–31.

    Article  PubMed  Google Scholar 

  22. Schriger DL, Baraff L. Defining normal capillary refill: variation with age, sex, and temperature. Ann Emerg Med. 1988;17:932–5.

    Article  CAS  PubMed  Google Scholar 

  23. Anderson B, Kelly AM, Kerr D, Clooney M, Jolley D. Impact of patient and environmental factors on capillary refill time in adults. Am J Emerg Med. 2008;26:62–5.

    Article  PubMed  Google Scholar 

  24. Hernandez G, Pedreros C, Veas E, Bruhn A, Romero C, Rovegno M, et al. Evolution of peripheral vs metabolic perfusion parameters during septic shock resuscitation. A clinical-physiologic study. J Crit Care. 2012;27:283–8.

    Article  PubMed  Google Scholar 

  25. Lima A, Jansen TC, Van Bommel J, Ince C, Bakker J. The prognostic value of the subjective assessment of peripheral perfusion in critically ill patients. Crit Care Med. 2009;37:934–8.

    Article  PubMed  Google Scholar 

  26. Dumas G, Lavillegrand JR, Joffre J, et al. Mottling score is a strong predictor of 14-day mortality in septic patients whatever vasopressor doses and other tissue perfusion parameters. Crit Care. 2019;23:211.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Huber W, Zanner R, Schneider G, Schmid R, Lahmer T. Assessment of regional perfusion and organ function: less and non-invasive techniques. Front Med. 2019;6:50.

    Article  Google Scholar 

  28. Jones AE, Shapiro NI, Trzeciak S, Arnold RC, Claremont HA, Kline JA. Lactate clearance vs central venous oxygen saturation as goals of early sepsis therapy: a randomized clinical trial. JAMA. 2010;303:739–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013;39:1034–9.

    Article  CAS  PubMed  Google Scholar 

  30. Lima AP, Beelen P, Bakker J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit Care Med. 2002;17:1210–13.

    Article  Google Scholar 

  31. He HW, Liu DW, Long Y, Wang XT. The peripheral perfusion index and transcutaneous oxygen challenge test are predictive of mortality in septic patients after resuscitation. Crit Care. 2013;17:R116.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hutchings S, Watts S, Kirkman E. The Cytocam video microscope. A new method for visualising the microcirculation using Incident Dark Field technology. Clin Hemorheol Microcirc. 2016;62:261–71.

    Article  PubMed  Google Scholar 

  33. Pozo MO, Kanoore Edul VS, Ince C, Dubin A. Comparison of different methods for the calculation of the microvascular flow index. Crit Care Res Pract. 2012;2012:102483.

    PubMed  PubMed Central  Google Scholar 

  34. Vellinga NAR, Boerma EC, Koopmans M, et al. International study on microcirculatory shock occurrence in acutely ill patients. Crit Care Med. 2015;43:48–56.

    Article  PubMed  Google Scholar 

  35. Rovas A, Seidel LM, Vink H, et al. Association of sublingual microcirculation parameters and endothelial glycocalyx dimensions in resuscitated sepsis. Crit Care. 2019;23:260.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ospina-Tascon G, Neves AP, Occhipinti G, Donadello K, Büchele G, Simion D, et al. Effects of fluids on microvascular perfusion in patients with severe sepsis. Intensive Care Med. 2010;36:949–55.

    Article  PubMed  Google Scholar 

  37. Pranskunas A, Koopmans M, Koetsier PM, Pilvinis V, Boerma EC. Microcirculatory blood flow as a tool to select ICU patients eligible for fluid therapy. Intensive Care Med. 2013;39:612–9.

    Article  CAS  PubMed  Google Scholar 

  38. Hanson JP, Lam SWK, Mohanty S, Alam S, Pattnaik R, Mahanta KC, et al. Fluid resuscitation of adults with severe falciparum malaria: effects on acid-base status, renal function, and extravascular lung water. Crit Care Med. 2013;41:972–81.

    Article  CAS  PubMed  Google Scholar 

  39. Bruegger D, Schwartz L, Chappell D, Jacob M, Rehm M, Vogeser M, et al. Release of atrial natriuretic peptide precedes shedding of the endothelial glycocalyx equally in patients undergoing on-and off-pump coronary artery bypass surgery. Basic Res Cardiol. 2011;106:1111–21.

    Article  CAS  PubMed  Google Scholar 

  40. Chappell D, Bruegger D, Potzel J, Jacob M, Brettner F, Vogeser M, et al. Hypervolemia increases release of atrial natriuretic peptide and shedding of the endothelial glycocalyx. Crit Care. 2014;18:1–8.

    Article  Google Scholar 

  41. Bruegger D, Jacob M, Rehm M, et al. Atrial natriuretic peptide induces shedding of endothelial glycocalyx in coronary vascular bed of Guinea pig hearts. Am J Physiol Heart Circ Physiol. 2005;289:H1993–9.

    Article  CAS  PubMed  Google Scholar 

  42. Puskarich MA, Cornelius DC, Tharp J, Nandi U, Jones AE. Plasma syndecan-1 levels identify a cohort of patients with severe sepsis at high risk for intubation after large-volume intravenous fluid resuscitation. J Crit Care. 2016;36:125–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tauseef M, Kini V, Knezevic N, Brannan M, Ramchandaran R, Fyrst H, et al. Activation of sphingosine kinase-1 reverses the increase in lung vascular permeability through sphingosine-1-phosphate receptor signaling in endothelial cells. Circ Res. 2008;103:1164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zeng Y, Adamson RH, Curry FRE, Tarbell JM. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. Am J Physiol Heart Circ Physiol. 2014;306:H363–72.

    Article  CAS  PubMed  Google Scholar 

  45. Adamson RH, Clark JF, Radeva M, Kheirolomoom A, Ferrara KW, Curry FE. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. Am J Physiol Heart Circ Physiol. 2014;306:H1011–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tanaka S, Escudier E, Hamada S, et al. Effect of RBC transfusion on sublingual microcirculation in hemorrhagic shock patients: a pilot study. Crit Care Med. 2017;45:e154–60.

    Article  PubMed  Google Scholar 

  47. Nielsen ND, Martin-Loeches I, Wentowski C. The effects of red blood cell transfusion on tissue oxygenation and the microcirculation in the intensive care unit: a systematic review. Transfus Med Rev. 2017;31:205–22.

    Article  PubMed  Google Scholar 

  48. Spronk PE, Ince C, Gardien MJ, Mathura KR, Oudemans-van Straaten HM, Zandstra DF. Nitroglycerin in septic shock after intravascular volume resuscitation. Lancet. 2002;360:1395–6.

    Article  PubMed  Google Scholar 

  49. Boerma EC, Koopmans M, Konijn A, et al. Effects of nitroglycerin on sublingual microcirculatory blood flow in patients with severe sepsis/septic shock after a strict resuscitation protocol: a double-blind randomized placebo controlled trial. Crit Care Med. 2010;38:93–100.

    Article  CAS  PubMed  Google Scholar 

  50. Jhanji S, Stirling S, Patel N, Hinds CJ, Pearse RM. The effect of increasing doses of norepinephrine on tissue oxygenation and microvascular flow in patients with septic shock. Crit Care Med. 2009;37:1961–6.

    Article  CAS  PubMed  Google Scholar 

  51. Dubin A, Pozo MO, Casabella CA, et al. Increasing arterial blood pressure with norepinephrine does not improve microcirculatory blood flow: a prospective study. Crit Care. 2009;13:R92.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Straat M, Müller MCA, Meijers JCM, et al. Effect of transfusion of fresh frozen plasma on parameters of endothelial condition and inflammatory status in non-bleeding critically ill patients: a prospective substudy of a randomized trial. Crit Care. 2015;19:163.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Martín-Loeches .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cantan, B., Martín-Loeches, I. (2020). Microcirculation in Patients with Sepsis: From Physiology to Interventions. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2020. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-37323-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37323-8_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37322-1

  • Online ISBN: 978-3-030-37323-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation