Nanomedicines in Tuberculosis: Diagnosis, Therapy and Nanodrug Delivery

  • Chapter
  • First Online:
Integrative Nanomedicine for New Therapies

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 669 Accesses

  • The original version of this chapter was revised: The co-author “Bilal A AL Jaidi” name has been corrected as “Bilal A Al Jaidi”. The correction to this chapter is available at https://doi.org/10.1007/978-3-030-36260-7_15

Abstract

Nanoparticle-based delivery systems represent a promising nano medications to deliver a therapeutic agent, selectively and effectively, to a specific tissue or organ in the body; thus treating chronic diseases such as tuberculosis. The delivery of first-line and second-line antituberculosis drugs, using synthetic or natural polymeric carriers, has been extensively reported as a potential intermittent chemotherapy. In addition to the prolonged drug release, this delivery system can enhance the therapeutic efficacy, reduce dosing frequency and side effects, and increase the possibility of selecting different routes of chemotherapy and targeting the site of infection. The choice of carrier, system stability, toxicity and production capacity are the main considerations during the development of such system. Regardless of the obstacles, the nano drug delivery have systems shown a promising effectiveness in treating TB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdulla, J. M., Tan, Y. T., & Darwis, Y. (2010). Rehydrated lyophilized rifampicin-loaded mPEGDSPE formulations for nebulization. AAPS PharmSciTech, 11, 663–671.

    Google Scholar 

  • Agarwal, A., Kandpal, H., Gupta, H. P., Singh, N. B., & Gupta, C. M. (1994). Tuftsin-bearing liposomes as rifampin vehicles in treatment of tuberculosis in mice. Antimicrobial Agents and Chemotherapy, 38, 588–593.

    CAS  Google Scholar 

  • Ahmad, S., & Mokaddas, E. (2014). Current status and future trends in the diagnosis and treatment of drug-susceptible and multidrug-resistant tuberculosis. Journal of Infection and Public Health, 7, 75–91.

    Google Scholar 

  • Ahmad, Z., Sharma, S., & Khuller, G. K. (2005). Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. International Journal of Antimicrobial Agents, 26, 298–303.

    Google Scholar 

  • Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6, 105–121.

    CAS  Google Scholar 

  • Al-Hallak, M. H. D. K., Sarfraz, M. K., Azarmi, S., Roa, W. H., Finlay, W. H., & Rouleau, C. (2012). Distribution of effervescent inhalable nanoparticles after pulmonary delivery: An in vivo study. Therapeutic Delivery, 3, 725–773.

    CAS  Google Scholar 

  • Amani, A., Amini, M. A., Ali, H. S., & York, P. (2011). Alternatives to conventional suspensions for pulmonary drug delivery by nebulisers: A review. Journal of Pharmaceutical Sciences, 100, 4563–4570.

    CAS  Google Scholar 

  • Anabousi, S., Kleemann, E., Bakowsky, U., Kissel, T., Schmehl, T., Gessler, T., et al. (2006). Effect of PEGylation on the stability of liposomes during nebulisation and in lung surfactant. Journal of Nanoscience and Nanotechnology, 6, 3010–3016.

    CAS  Google Scholar 

  • Andersen, P., Munk, M. E., Pollock, J. M., & Doherty, T. M. (2000). Specific immune-based diagnosis of tuberculosis. Lancet, 356, 1099–1104.

    CAS  Google Scholar 

  • Andrade, F., Rafael, D., Videira, M., Ferreira, D., Sosnik, A., & Sarmento, B. (2013). Nanotechnology and pulmonary delivery to overcome resistance in infectious diseases. Advanced Drug Delivery Reviews, 65, 1816–1827.

    CAS  Google Scholar 

  • Asadi Gharabaghi, M. (2012). Cutaneous tuberculosis caused by isoniazid-resistant Mycobacterium tuberculosis. BMJ Case Reports. (2012).

    Google Scholar 

  • Azarmi, S., Lobenberg, R., Roa, W. H., Tai, S., & Finlay, W. H. (2008). Formulation and in vivo evaluation of effervescent inhalable carrier particles for pulmonary delivery of nanoparticles. Drug Development and Industrial Pharmacy, 34, 943–947.

    CAS  Google Scholar 

  • Bajpai, A. K., & Gupta, R. (2011). Magnetically mediated release of ciprofloxacin from polyvinyl alcohol based superparamagnetic nanocomposites. Journal of Materials Science. Materials in Medicine, 22, 357–369.

    CAS  Google Scholar 

  • Bangham, A. D. (1993). Liposomes: The Babraham connection. Chemistry and Physics of Lipids, 64, 275–285.

    CAS  Google Scholar 

  • Barry, C. E., III, Boshoff, H. I., Dartois, V., Dick, T., Ehrt, S., Flynn, J., et al. (2009). The spectrum of latent tuberculosis: Rethinking the biology and intervention strategies. Nature Reviews Microbiology, 7, 845–855.

    CAS  Google Scholar 

  • Beck-Broichsitter, M., Merkel, O. M., & Kissel, T. (2012). Controlled pulmonary drug and gene delivery using polymeric nano-carriers. Journal of Controlled Release, 161, 214–224.

    CAS  Google Scholar 

  • Behr, M. A., Warren, S. A., Salamon, H., Hopewell, P. C., Ponce de Leon, A., Daley, C. L., et al. (1999). Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet, 353, 444–449.

    CAS  Google Scholar 

  • Bellini, R. G., Guimarães, A. P., Pacheco, M. A. C., Dias, D. M., Furtado, V. R., de Alencastro, R. B., et al. (2015). Association of the anti-tuberculosis drug rifampicin with a PAMAM dendrimer. Journal of Molecular Graphics and Modelling, 60, 34–42.

    CAS  Google Scholar 

  • Booysen, L. L., Kalombo, L., Brooks, E., Hansen, R., Gilliland, J., Gruppo, V., et al. (2013). In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(dl-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid. International Journal of Pharmaceutics, 444, 10–17.

    CAS  Google Scholar 

  • Bosquillon, C., Lombry, C., Preat, V., & Vanbever, R. (2001). Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. Journal of Controlled Release, 70, 329–339.

    CAS  Google Scholar 

  • Breslauer, D. N., Maamari, R. N., Switz, N. A., Lam, W. A., & Fletcher, D. A. (2009). Mobile phone based clinical microscopy for global health applications. PLoS One 2009; 4.

    Google Scholar 

  • Buijtels, P. C., Willemse-Erix, H. F., Petit, P. L., Endtz, H. P., Puppels, G. J., Verbrugh, H. A., et al. (2008). Rapid identification of mycobacteria by Raman spectroscopy. Journal of Clinical Microbiology, 46, 961–965.

    CAS  Google Scholar 

  • Caon, T., Campos, C. E., Simoes, C. M., & Silva, M. A. (2015). Novel perspectives in the tuberculosis treatment: Administration of isoniazid through the skin. International Journal of Pharmaceutics, 494, 463–470.

    CAS  Google Scholar 

  • Cattamanchi, A., Smith, R., Steingart, K. R., Metcalfe, J. Z., Date, A., Coleman, C., et al. (2011). Interferon-gamma release assays for the diagnosis of latent tuberculosis infection in HIV-infected individuals: A systematic review and meta-analysis. Journal of Acquired Immune Deficiency Syndromes, 56, 230–238.

    CAS  Google Scholar 

  • Chan, J. G., Chan, H. K., Prestidge, C. A., Denman, J. A., Young, P. M., & Traini, D. (2013). A novel dry powder inhalable formulation incorporating three first-line anti-tubercular antibiotics. European Journal of Pharmaceutics and Biopharmaceutics, 83, 285–292.

    CAS  Google Scholar 

  • Chen, T., Li, Q., Guo, L., Yu, L., Li, Z., Guo, H., et al. (2016). Lower cytotoxicity, high stability, and long-term antibacterial activity of a poly(methacrylic acid)/isoniazid/rifampin nanogel against multidrug-resistant intestinal Mycobacterium tuberculosis. Materials Science and Engineering C: Materials for Biological Applications, 58, 659–665.

    CAS  Google Scholar 

  • Chen, J., Zhang, R., Wang, J., Liu, L., Zheng, Y., Shen, Y., et al. (2011). Interferon-gamma release assays for the diagnosis of active tuberculosis in HIV-infected patients: A systematic review and meta-analysis. PLoS ONE, 6, e26827.

    CAS  Google Scholar 

  • Cheow, W. S., & Hadinoto, K. (2010). Enhancing encapsulation efficiency of highly water-soluble antibiotic in poly(lactic-co-glycolic acid) nanoparticles: Modifications of standard nanoparticle preparation methods. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370, 79–86.

    CAS  Google Scholar 

  • Cheow, W. S., & Hadinoto, K. (2011). Factors affecting drug encapsulation and stability of lipid–polymer hybrid nanoparticles. Colloids and Surfaces B: Biointerfaces, 85, 214–220.

    CAS  Google Scholar 

  • Chimote, G., & Banerjee, R. (2005). Effect of antitubercular drugs on dipalmitoylphosphatidylcholine monolayers: Implications for drug loaded surfactants. Respiratory Physiology & Neurobiology, 145, 65–77.

    CAS  Google Scholar 

  • Chimote, G., & Banerjee, R. (2009). Evaluation of antitubercular drug-loaded surfactants as inhalable drug-delivery systems for pulmonary tuberculosis. Journal of Biomedical Materials Research, 89, 281–292.

    CAS  Google Scholar 

  • Chono, S., Kaneko, K., Yamamoto, E., Togami, K., & Morimoto, K. (2010). Effect of surface mannose modification on aerosolized liposomal delivery to alveolar macrophages. Drug Development and Industrial Pharmacy, 36, 102–107.

    CAS  Google Scholar 

  • Choonara, Y. E., Pillay, V., Ndesendo, V. M. K., du Toit, L. C., Kumar, P., Khan, R. A., et al. (2011). Polymeric emulsion and crosslink-mediated synthesis of super-stable nanoparticles as sustained-release anti-tuberculosis drug carriers. Colloids and Surfaces B: Biointerfaces, 87, 243–254.

    CAS  Google Scholar 

  • Chow, A. H., Tong, H. H., Chattopadhyay, P., & Shekunov, B. Y. (2007). Particle engineering for pulmonary drug delivery. Pharmaceutical Research, 24, 411–437.

    CAS  Google Scholar 

  • Chuan, J., Li, Y., Yang, L., Sun, X., Zhang, Q., Gong, T., et al. (2013). Enhanced rifampicin delivery to alveolar macrophages by solid lipid nanoparticles. Journal of Nanoparticle Research, 15, 1–9.

    Google Scholar 

  • Chun, A. L. (2009). Nanoparticles offer hope for TB detection. Nature Nanotechnology, 4, 698–699.

    CAS  Google Scholar 

  • Clemens, D. L., Lee, B. Y., Xue, M., Thomas, C. R., Meng, H., Ferris, D., et al. (2012). Targeted intracellular delivery of antituberculosis drugs to Mycobacterium tuberculosis-infected macrophages via functionalized mesoporous silica nanoparticles. Antimicrobial Agents and Chemotherapy, 56, 2535–2545.

    CAS  Google Scholar 

  • Cobelens, F. G., Egwaga, S. M., van Ginkel, T., Muwinge, H., Matee, M. I., & Borgdorff, M. W. (2006). Tuberculin skin testing in patients with HIV infection: Limited benefit of reduced cutoff values. Clinical Infectious Diseases, 43, 634–639.

    Google Scholar 

  • Costa, P., Amaro, A., Botelho, A., Inacio, J., & Baptista, P. V. (2010). Gold nanoprobe assay for the identification of mycobacteria of the Mycobacterium tuberculosis complex. Clinical Microbiology & Infection, 16, 1464–1469.

    CAS  Google Scholar 

  • Costa, A., Sarmento, B., & Seabra, V. (2015). Targeted drug delivery systems for lung macrophages. Current Drug Targets, 16, 1565–1581.

    CAS  Google Scholar 

  • Dames, P., Gleich, B., Flemmer, A., Hajek, K., Seidl, N., Wiekhorst, F., et al. (2007). Targeted delivery of magnetic aerosol droplets to the lung. Nature Nanotechnology, 2, 495–499.

    Google Scholar 

  • Dartois, V. (2014). The path of anti-tuberculosis drugs: From blood to lesions to mycobacterial cells. Nature Reviews Microbiology, 12, 159–167.

    CAS  Google Scholar 

  • Das, S., Tucker, I., & Stewart, P. (2015). Inhaled dry powder formulations for treating tuberculosis. Current Drug Delivery, 12, 26–39.

    Google Scholar 

  • de Faria, T. J., Roman, M., de Souza, N. M., De Vecchi, R., de Assis, J. V., dos Santos, A. L., et al. (2012). An isoniazid analogue promotes Mycobacterium tuberculosis-nanoparticle interactions and enhances bacterial killing by macrophages. Antimicrobial Agents and Chemotherapy, 56, 2259–2267.

    Google Scholar 

  • Deol, P., Khuller, G. K., & Joshi, K. (1997). Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrobial Agents and Chemotherapy, 41, 1211–1214.

    CAS  Google Scholar 

  • Desai, T. R., Hancock, R. E. W., & Finlay, W. H. (2002a). A facile method of delivery of liposomes by nebulization. Journal of Controlled Release, 84, 69–78.

    CAS  Google Scholar 

  • Desai, T. R., Wong, J. P., Hancock, R. E. W., & Finlay, W. H. (2002b). A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling. Journal of Pharmaceutical Sciences, 91, 482–491.

    CAS  Google Scholar 

  • Dheda, K., van Zyl Smit, R., Badri, M., & Pai, M. (2009). T-cell interferon-gamma release assays for the rapid immunodiagnosis of tuberculosis: Clinical utility in high-burden vs. low-burden settings. Current Opinion in Pulmonary Medicine, 15, 188–200.

    Google Scholar 

  • Diaz-Gonzalez, M., Gonzalez-Garcia, M. B., & Costa-Garcia, A. (2005). Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosensors & Bioelectronics, 20, 2035–2043.

    CAS  Google Scholar 

  • Douglas, J. G., & McLeod, M. J. (1999). Pharmacokinetic factors in the modern drug treatment of tuberculosis. Clinical Pharmacokinetics, 37, 127–146.

    CAS  Google Scholar 

  • du Toit, L. C., Pillay, V., & Danckwerts, M. P. (2006). Tuberculosis chemotherapy: Current drug delivery approaches. Respiratory Research, 7, 118.

    Google Scholar 

  • Dunlap, N. E., Bass, J., Fujiwara, P., Hopewell, P., Horsburgh, C. R., & Salfinger, H. M. (2000). Diagnostic standards and classification of tuberculosis in adults and children. American Journal of Respiratory and Critical Care Medicine, 161, 1376–1395.

    Google Scholar 

  • El-Gendy, N., Desai, V., & Berkland, C. (2010). Agglomerates of ciprofloxacin nanoparticles yield fine dry powder aerosols. Journal of Pharmaceutical Innovation, 5, 79–87.

    Google Scholar 

  • Ely, L., Roa, W., Finlay, W. H., & Lobenberg, R. (2007). Effervescent dry powder for respiratory drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 65, 346–353.

    CAS  Google Scholar 

  • Esmaeili, F., Hosseini-Nasr, M., Rad-Malekshahi, M., Samadi, N., Atyabi, F., & Dinarvand, R. (2007). Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles. Nanomedicine, 3, 161–167.

    CAS  Google Scholar 

  • Farhat, M., Greenaway, C., Pai, M., & Menzies, D. (2006). False-positive tuberculin skin tests: What is the absolute effect of BCG and non-tuberculous mycobacteria? International Journal of Tuberculosis and Lung Disease, 10, 1192–1204.

    CAS  Google Scholar 

  • Feng, H., Zhang, L., & Zhu, C. (2013). Genipin crosslinked ethyl cellulose–chitosan complex microspheres for anti-tuberculosis delivery. Colloids and Surfaces B: Biointerfaces, 103, 530–537.

    CAS  Google Scholar 

  • Ferron, G. A. (1994). Aerosol properties and lung deposition. European Respiratory Journal, 7, 1392–1394.

    CAS  Google Scholar 

  • Ferron, G. A., Upadhyay, S., Zimmermann, R., & Karg, E. (2013). Model of the deposition of aerosol particles in the respiratory tract of the rat. II. Hygroscopic particle deposition. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 26, 101–119.

    CAS  Google Scholar 

  • Finlay, W. H., & Wong, J. P. (1998). Regional lung deposition of nebulized liposome encapsulated ciprofloxacin. International Journal of Pharmaceutics, 167, 121–127.

    CAS  Google Scholar 

  • Gao, L., Liu, G., Ma, J., Wang, X., Zhou, L., & Li, X. (2012). Drug nanocrystals: In vivo performances. Journal of Controlled Release, 160, 418–430.

    CAS  Google Scholar 

  • Garg, T., Rath, G., & Goyal, A. K. (2015). Inhalable chitosan nanoparticles as antitubercular drug carriers for an effective treatment of tuberculosis. Artificial Cells, Nanomedicine, and Biotechnology, 44, 997–1001.

    Google Scholar 

  • Gaur, P. K., Mishra, S., Gupta, V. B., Rathod, M. S., Purohit, S., & Savla, B. A. (2010). Targeted drug delivery of rifampicin to the lungs: Formulation, characterization, and stability studies of preformed aerosolized liposome and in situ formed aerosolized liposome. Drug Development and Industrial Pharmacy, 36, 638–646.

    CAS  Google Scholar 

  • Gill, S., Löbenberg, R., Ku, T., Azarmi, S., Roa, W., & Prenner, E. J. (2007). Nanoparticles: Characteristics, mechanisms of action, and toxicity in pulmonary drug delivery—A review. Journal of Biomedical Nanotechnology, 3, 107–119.

    CAS  Google Scholar 

  • Ginsberg, A. M. (2010). Tuberculosis drug development: Progress, challenges, and the road ahead. Tuberculosis, 90, 162–167.

    CAS  Google Scholar 

  • Grenha, A., Seijo, B., & Remunan-Lopez, C. (2005). Microencapsulated chitosan nanoparticles for lung protein delivery. European Journal of Pharmaceutical Sciences, 25, 427–437.

    CAS  Google Scholar 

  • Grosset, J. H., Singer, T. G., & Bishai, W. R. (2012). New drugs for the treatment of tuberculosis: Hope and reality. International Journal of Tuberculosis and Lung Disease, 16, 1005–1014.

    CAS  Google Scholar 

  • Hanif, S. N., & Garcia-Contreras, L. (2012). Pharmaceutical aerosols for the treatment and prevention of tuberculosis. Frontiers in Cellular and Infection Microbiology, 2, 118.

    Google Scholar 

  • He, F., Zhao, J., Zhang, L., & Su, X. (2003). A rapid method for determining Mycobacterium tuberculosis based on a bulk acoustic wave impedance biosensor. Talanta, 59, 935–941.

    CAS  Google Scholar 

  • Hearn, M. J., & Cynamon, M. H. (2003). In vitro and in vivo activities of acylated derivatives of isoniazid against Mycobacterium tuberculosis. Drug Design and Discovery, 18, 103–108.

    CAS  Google Scholar 

  • Hearn, M. J., Cynamon, M. H., Chen, M. F., Coppins, R., Davis, J., & Joo-On Kang, H. (2009). Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. European Journal of Medicinal Chemistry, 44, 4169–4178.

    CAS  Google Scholar 

  • Hokey, D. A., & Misra, A. (2011). Aerosol vaccines for tuberculosis: A fine line between protection and pathology. Tuberculosis, 91, 82–85.

    CAS  Google Scholar 

  • Homola, J. (2008). Surface plasmon resonance sensors for detection of chemical and biological species. Chemical Reviews, 108, 462–493.

    CAS  Google Scholar 

  • Hong, S. C., Chen, H. X., Lee, J., Park, H. K., Kim, Y. S., Shin, H. C., et al. (2011). Ultrasensitive immunosensing of tuberculosis CFP-10 based on SPR spectroscopy. Sensors and Actuators B: Chemical, 156, 271–275.

    CAS  Google Scholar 

  • Höök, F., Kasemo, B., Nylander, T., Fant, C., Sott, K., & Elwing, H. (2001). Variations in coupled water, viscoelastic properties, and film thickness of a Mefp-1 protein film during adsorption and cross-linking: A quartz crystal microbalance with dissipation monitoring, ellipsometry, and surface plasmon resonance study. Analytical Chemistry, 73, 5796–5804.

    Google Scholar 

  • Horváti, K., Bacsa, B., Kiss, É., Gyulai, G., Fodor, K., Balka, G., et al. (2014). Nanoparticle encapsulated lipopeptide conjugate of antitubercular drug isoniazid: In vitro intracellular activity and in vivo efficacy in a guinea pig model of tuberculosis. Bioconjugate Chemistry, 25, 2260–2268.

    Google Scholar 

  • Horváti, K., Bacsa, B., Szabo, N., Fodor, K., Balka, G., Rusvai, M., et al. (2015). Antimycobacterial activity of peptide conjugate of pyridopyrimidine derivative against Mycobacterium tuberculosis in a series of in vitro and in vivo models. Tuberculosis, 95, S207–S211.

    Google Scholar 

  • Jain, D., & Banerjee, R. (2008). Comparison of ciprofloxacin hydrochloride-loaded protein, lipid, and chitosan nanoparticles for drug delivery. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 86, 105–112.

    Google Scholar 

  • Jain, S. K., Gupta, Y., Ramalingam, L., Jain, A., Jain, A., Khare, P., et al. (2010). Lactoseconjugated PLGA nanoparticles for enhanced delivery of rifampicin to the lung for effective treatment of pulmonary tuberculosis. Journal of Pharmaceutical Science and Technology, 64, 278–287.

    CAS  Google Scholar 

  • Johnson, C. M., Pandey, R., Sharma, S., Khuller, G. K., Basaraba, R. J., Orme, I. M., et al. (2005). Oral therapy using nanoparticle-encapsulated antituberculosis drugs in guinea pigs infected with Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 49, 4335–4338.

    CAS  Google Scholar 

  • Justo, O. R., & Moraes, A. M. (2003). Incorporation of antibiotics in liposomes designed for tuberculosis therapy by inhalation. Drug Delivery, 10, 201–207.

    CAS  Google Scholar 

  • Kabanov, A. V., & Vinogradov, S. V. (2009). Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angewandte Chemie International Edition, 48, 5418–5429.

    CAS  Google Scholar 

  • Kajjari, P. B., Manjeshwar, L. S., & Aminabhavi, T. M. (2012). Novel pH- and temperature responsive blend hydrogel microspheres of sodium alginate and PNIPAAm-g-GG for controlled release of isoniazid. AAPS PharmSciTech, 13, 1147–1157.

    CAS  Google Scholar 

  • Keijsers, R. R., Bovenschen, H. J., & Seyger, M. M. (2011). Cutaneous complication after BCG vaccination: Case report and review of the literature. Journal of Dermatological Treatment, 22, 315–318.

    Google Scholar 

  • Kennedy, E. J. (2013). Biological drug products: Development and strategies. Hoboken: Wiley.

    Google Scholar 

  • Kong, F., Zhou, F., Ge, L., Liu, X., & Wang, Y. (2012). Mannosylated liposomes for targeted gene delivery. International Journal of Nanomedicine, 7, 1079–1089.

    CAS  Google Scholar 

  • Lee, J. Y. (2015). Diagnosis and treatment of extrapulmonary tuberculosis. Tuberculosis and Respiratory Diseases, 78, 47–55.

    Google Scholar 

  • Lee, W., Loo, C., Traini, D., & Young, P. M. (2015). Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opinion on Drug Delivery, 12, 1009–1026.

    CAS  Google Scholar 

  • Lee, H., Sun, E., Ham, D., & Weissleder, R. (2008). Chip-NMR biosensor for detection and molecular analysis of cells. Nature Medicine, 14, 869–874.

    Google Scholar 

  • Li, X., Xue, M., Raabe, O. G., Aaron, H. L., Eisen, E. A., Evans, J. E., et al. (2015). Aerosol droplet delivery of mesoporous silica nanoparticles: A strategy for respiratory-based therapeutics. Nanomedicine, 11, 1377–1385.

    CAS  Google Scholar 

  • Ling, D. I., Pai, M., Davids, V., Brunet, L., Lenders, L., Meldau, R., et al. (2011). Are interferon-gamma release assays useful for diagnosing active tuberculosis in a high-burden setting? European Respiratory Journal, 38, 649–656.

    CAS  Google Scholar 

  • Malathi, S., & Balasubramanian, S. (2011). Synthesis of biodegradable polymeric nanoparticles and their controlled drug delivery for tuberculosis. Journal of Biomedical Nanotechnology, 7, 150–151.

    CAS  Google Scholar 

  • Mamaeva, V., Sahlgren, C., & Lindén, M. (2013). Mesoporous silica nanoparticles in medicine—Recent advances. Advanced Drug Delivery Reviews, 65, 689–702.

    CAS  Google Scholar 

  • Manion, J. A. R., Cape, S. P., McAdams, D. H., Rebits, L. G., Evans, S., & Sievers, R. E. (2012). Inhalable antibiotics manufactured through use of near-critical or supercritical fluids. Aerosol Science and Technology, 46, 403–410.

    CAS  Google Scholar 

  • Martin, C. (2005). The dream of a vaccine against tuberculosis: New vaccines improving or replacing BCG? European Respiratory Journal, 26, 162–167.

    CAS  Google Scholar 

  • Mazurek, G. H., Jereb, J., Lobue, P., Iademarco, M. F., Metchock, B., & Vernon, A. (2005). Guidelines for using the QuantiFERON-TB Gold test for detecting Mycobacterium tuberculosis infection, United States. MMWR Recommendations and Reports, 54, 49–55.

    Google Scholar 

  • Mehanna, M. M., Mohyeldin, S. M., & Elgindy, N. A. (2014). Respirable nanocarriers as a promising strategy for antitubercular drug delivery. Journal of Controlled Release, 187, 183–197.

    CAS  Google Scholar 

  • Metcalfe, J. Z., Everett, C. K., Steingart, K. R., Cattamanchi, A., Huang, L., Hopewell, P. C., et al. (2011). Interferon-gamma release assays for active pulmonary tuberculosis diagnosis in adults in low- and middle-income countries: Systematic review and meta-analysis. Journal of Infectious Diseases, 204(Suppl. 4), S1120–S1129.

    Google Scholar 

  • Misra, A., Hickey, A. J., Rossi, C., Borchard, G., Terada, H., Makino, K., et al. (2011). Inhaled drug therapy for treatment of tuberculosis. Tuberculosis, 91, 71–81.

    CAS  Google Scholar 

  • Mitchison, D. A., & Fourie, P. B. (2010). The near future: Improving the activity of rifamycins and pyrazinamide. Tuberculosis, 90, 177–181.

    CAS  Google Scholar 

  • Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: Current status and future prospects. FASEB Journal, 19, 311–330.

    CAS  Google Scholar 

  • Moretton, M. A., Hocht, C., Taira, C., & Sosnik, A. (2014). Rifampicin-loaded ‘flower-like’ polymeric micelles for enhanced oral bioavailability in an extemporaneous liquid fixed-dose combination with isoniazid. Nanomedicine (London), 9, 1635–1650.

    CAS  Google Scholar 

  • Mouritsen, O. G. (2011). Model answers to lipid membrane questions. Cold Spring Harbor Perspectives in Biology, 3, a004622.

    Google Scholar 

  • Muttil, P., Wang, C., & Hickey, A. J. (2009). Inhaled drug delivery for tuberculosis therapy. Pharmaceutical Research, 26, 2401–2416.

    CAS  Google Scholar 

  • Nagel, T., Ehrentreich-Forster, E., Singh, M., Schmitt, K., Brandenburg, A., Berka, A., et al. (2008). Direct detection of tuberculosis infection in blood serum using three optical label-free approaches. Sensors and Actuators B: Chemical, 129, 934–940.

    CAS  Google Scholar 

  • Nimje, N., Agarwal, A., Saraogi, G. K., Lariya, N., Rai, G., Agrawal, H., et al. (2009). Mannosylated nanoparticulate carriers of rifabutin for alveolar targeting. Journal of Drug Targeting, 17, 777–787.

    CAS  Google Scholar 

  • Onoshita, T., Shimizu, Y., Yamaya, N., Miyazaki, M., Yokoyama, M., Fujiwara, N., et al. (2010). The behavior of PLGA microspheres containing rifampicin in alveolar macrophages. Colloids and Surfaces B: Biointerfaces, 76, 151–157.

    CAS  Google Scholar 

  • Onozaki, I., & Raviglione, M. (2010). Stop** tuberculosis in the 21st century: Goals and strategies. Respirology, 15, 32–43.

    Google Scholar 

  • Pai, N. P., & Pai, M. (2012). Point-of-care diagnostics for HIV and tuberculosis: Landscape, pipeline, and unmet needs. Discovery Medicine, 13, 35–45.

    Google Scholar 

  • Pandey, R., & Ahmad, Z. (2011). Nanomedicine and experimental tuberculosis: Facts, flaws, and future. Nanomedicine, 7, 259–272.

    CAS  Google Scholar 

  • Pandey, R., & Khuller, G. K. (2004). Chemotherapeutic potential of alginate–chitosan microspheres as anti-tubercular drug carriers. Journal of Antimicrobial Chemotherapy, 53, 635–640.

    CAS  Google Scholar 

  • Pandey, R., & Khuller, G. K. (2005a). Antitubercular inhaled therapy: Opportunities, progress and challenges. Journal of Antimicrobial Chemotherapy, 55, 430–435.

    CAS  Google Scholar 

  • Pandey, R., & Khuller, G. K. (2005b). Solid lipid particle-based inhalable sustained drug delivery system against experimental tuberculosis. Tuberculosis, 85, 227–234.

    CAS  Google Scholar 

  • Pandey, R., Sharma, S., & Khuller, G. K. (2005). Oral solid lipid nanoparticle-based antitubercular chemotherapy. Tuberculosis, 85, 415–420.

    CAS  Google Scholar 

  • Pandey, R., Sharma, A., Zahoor, A., Sharma, S., Khuller, G. K., & Prasad, B. (2003). Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. Journal of Antimicrobial Chemotherapy, 52, 981–986.

    CAS  Google Scholar 

  • Patil, J. S., Devi, V. K., Devi, K., & Sarasija, S. (2015). A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India, 32, 331–338.

    Google Scholar 

  • Patil-Gadhe, A., & Pokharkar, V. (2014). Single step spray drying method to develop proliposomes for inhalation: A systematic study based on quality by design approach. Pulmonary Pharmacology & Therapeutics, 27, 197–207.

    CAS  Google Scholar 

  • Peh, W. Y. X., Reimhult, E., Teh, H. F., Thomsen, J. S., & Su, X. (2007). Understanding ligand binding effects on the conformation of estrogen receptor α-DNA complexes: A combinational quartz crystal microbalance with dissipation and surface plasmon resonance study. Biophysical Journal, 92, 4415–4423.

    CAS  Google Scholar 

  • Pham, D. D., Fattal, E., & Tsapis, N. (2015). Pulmonary drug delivery systems for tuberculosis treatment. International Journal of Pharmaceutics, 478, 517–529.

    CAS  Google Scholar 

  • Pinheiro, M., Lima, J., & Reis, S. (2011). Liposomes as drug delivery systems for the treatment of TB. Nanomedicine, 6, 1413–1428.

    CAS  Google Scholar 

  • Pitt, J. M., Blankley, S., McShane, H., & O’Garra, A. (2013). Vaccination against tuberculosis: How can we better BCG? Microbial Pathogenesis, 58, 2–16.

    Google Scholar 

  • Pourshahab, P. S., Gilani, K., Moazeni, E., Eslahi, H., Fazeli, M. R., & Jamalifar, H. (2011). Preparation and characterization of spray dried inhalable powders containing chitosan nanoparticles for pulmonary delivery of isoniazid. Journal of Microencapsulation, 28, 605–613.

    CAS  Google Scholar 

  • Prabakaran, D., Singh, P., Jaganathan, K. S., & Vyas, S. P. (2004). Osmotically regulated asymmetric capsular systems for simultaneous sustained delivery of anti-tubercular drugs. Journal of Controlled Release, 95, 239–248.

    CAS  Google Scholar 

  • Prabhakar, N., Arora, K., Arya, S. K., Solanki, P. R., Iwamoto, M., Singh, H., et al. (2008). Nucleic acid sensor for M. tuberculosis detection based on surface plasmon resonance. Analyst, 133, 1587–1592.

    CAS  Google Scholar 

  • Qurrat-ul-Ain, S., Sharma, G. K., & Khuller, S. K. (2003). Garg, alginate-based oral drug delivery system for tuberculosis: Pharmacokinetics and therapeutic effects. Journal of Antimicrobial Chemotherapy, 51, 931–938.

    CAS  Google Scholar 

  • Radtke, M., Souto, E. B., & Muller, R. H. (2005). Nanostructured lipid carriers—A novel generation of solid lipid drug carriers. Pharmaceutical Technology Europe, 17, 45–50.

    CAS  Google Scholar 

  • Ranjita, S., Loaye, A. S., & Khalil, M. (2011). Present status of nanoparticle research for treatment of tuberculosis. Journal of Pharmacy & Pharmaceutical Sciences, 14, 100–116.

    Google Scholar 

  • Ren, J., He, F., Yi, S., & Cui, X. (2008). A new MSPQC for rapid growth and detection of Mycobacterium tuberculosis. Biosensors & Bioelectronics, 24, 403–409.

    CAS  Google Scholar 

  • Roa, W. H., Azarmi, S., Al-Hallak, M. H., Finlay, W. H., Magliocco, A. M., & Lobenberg, R. (2011). Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. Journal of Controlled Release, 150, 49–55.

    CAS  Google Scholar 

  • Rytting, E., Nguyen, J., Wang, X., & Kissel, T. (2008). Biodegradable polymeric nanocarriers for pulmonary drug delivery. Expert Opinion on Drug Delivery, 5, 629–639.

    CAS  Google Scholar 

  • Santos, J. B., Figueiredo, A. R., Ferraz, C. E., Oliveira, M. H., Silva, P. G., & Medeiros, V. L. (2014). Cutaneous tuberculosis: Epidemiologic, etiopathogenic and clinical aspects—Part I. Anais Brasileiros de Dermatologia, 89, 219–228.

    Google Scholar 

  • Sarkar, S., & Suresh, M. R. (2011). An overview of tuberculosis chemotherapy—A literature review. Journal of Pharmacy & Pharmaceutical Sciences, 14, 148–161.

    CAS  Google Scholar 

  • Schütz, C. A., Juillerat-Jeanneret, L., Käuper, P., & Wandrey, C. (2011). Cell response to the exposure to chitosan–TPP//alginate nanogels. Biomacromolecules, 12, 4153–4161.

    Google Scholar 

  • Semaan, R., Traboulsi, R., & Kanj, S. (2008). Primary Mycobacterium tuberculosis complex cutaneous infection: Report of two cases and literature review. International Journal of Infectious Diseases, 12, 472–477.

    Google Scholar 

  • Sethi, T., & Agrawal, A. (2011). Structure and function of the tuberculous lung: Considerations for inhaled therapies. Tuberculosis, 91, 67–70.

    Google Scholar 

  • Sethuraman, G., & Ramesh, V. (2013). Cutaneous tuberculosis in children. Pediatric Dermatology, 30, 7–16.

    Google Scholar 

  • Sharma, A., Sharma, S., & Khuller, G. K. (2004). Lectin-functionalized poly (lactide-coglycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. Journal of Antimicrobial Chemotherapy, 54, 761–766.

    CAS  Google Scholar 

  • Sharma, K., Somavarapu, S., Colombani, A., Govind, N., & Taylor, K. M. (2012). Crosslinked chitosan nanoparticle formulations for delivery from pressurized metered dose inhalers. European Journal of Pharmaceutics and Biopharmaceutics, 81, 74–81.

    CAS  Google Scholar 

  • Shen, Z. G., Chen, W. H., Jugade, N., Gao, L. Y., Glover, W., Shen, J. Y., et al. (2012). Fabrication of inhalable spore like pharmaceutical particles for deep lung deposition. International Journal of Pharmaceutics, 430, 98–103.

    CAS  Google Scholar 

  • Shingnapurkar, D., Dandawate, P., Anson, C. E., Powell, A. K., Afrasiabi, Z., Sinn, E., et al. (2012). Synthesis and characterization of pyruvate-isoniazid analogs and their copper complexes as potential ICL inhibitors. Bioorganic & Medicinal Chemistry Letters, 22, 3172–3176.

    CAS  Google Scholar 

  • Siddiqi, K., Lambert, M. L., & Walley, J. (2003). Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: The current evidence. The Lancet Infectious Diseases, 3, 288–296.

    Google Scholar 

  • Singh, H., Bhandari, R., & Kaur, I. P. (2013). Encapsulation of rifampicin in a solid lipid nanoparticulate system to limit its degradation and interaction with isoniazid at acidic pH. International Journal of Pharmaceutics, 446, 106–111.

    CAS  Google Scholar 

  • Son, Y. J., & McConville, J. T. (2011). A new respirable form of rifampicin. European Journal of Pharmaceutics and Biopharmaceutics, 78, 366–376.

    CAS  Google Scholar 

  • Song, X., Lin, Q., Guo, L., Fu, Y., Han, J., & Ke, H. (2015). Rifampicin loaded mannosylated cationic nanostructured lipid carriers for alveolar macrophage specific delivery. Pharmaceutical Research, 32, 1741–1751.

    CAS  Google Scholar 

  • Soo, P. C., Horng, Y. T., Chang, K. C., Wang, J. Y., Hsueh, P. R., Chuang, C. Y., et al. (2009). A simple gold nanoparticle probes assay for identification of Mycobacterium tuberculosis and Mycobacterium tuberculosis complex from clinical specimens. Molecular and Cellular Probes, 23, 240–246.

    CAS  Google Scholar 

  • Sosnik, A., Carcaboso, A. M., Glisoni, R. J., Moretton, M. A., & Chiappetta, D. A. (2010). New old challenges in tuberculosis: Potentially effective nanotechnologies in drug delivery. Advanced Drug Delivery Reviews, 62, 547–559.

    CAS  Google Scholar 

  • Sung, J. C., Padilla, D. J., Garcia-Contreras, L., Verberkmoes, J. L., Durbin, D., Peloquin, C. A., et al. (2009). Formulation and pharmacokinetics of self-assembled rifampicin nanoparticle systems for pulmonary delivery. Pharmaceutical Research, 26, 1847–1855.

    CAS  Google Scholar 

  • Sung, J. C., Pulliam, B. L., & Edwards, D. A. (2007). Nanoparticles for drug delivery to the lungs. Trends in Biotechnology, 25, 563–570.

    CAS  Google Scholar 

  • Thanyani, S. T., Roberts, V., Siko, D. G. R., Vrey, P., & Verschoor, J. A. (2008). A novel application of affinity biosensor technology to detect antibodies to mycolic acid in tuberculosis patients. Journal of Immunological Methods, 332, 61–72.

    CAS  Google Scholar 

  • Thiruppathiraja, C., Kamatchiammal, S., Adaikkappan, P., Santhosh, D. J., & Alagar, M. (2011). Specific detection of Mycobacterium sp. genomic DNA using dual labeled gold nanoparticle based electrochemical biosensor. Analytical Biochemistry, 417, 73–79.

    CAS  Google Scholar 

  • Tom, R. T., Suryanarayanan, V., Reddy, P. G., Baskaran, S., & Pradeep, T. (2004). Ciprofloxacinprotected gold nanoparticles. Langmuir, 20, 1909–1914.

    CAS  Google Scholar 

  • Turner, P. V., Brabb, T., Pekow, C., & Vasbinder, M. A. (2011). Administration of substances to laboratory animals: Routes of administration and factors to consider. Journal of the American Association for Laboratory Animal Science, 50, 600–613.

    CAS  Google Scholar 

  • Van Rie, A., Page-Shipp, L., Scott, L., Sanne, I., & Stevens, W. (2010). Xpert® MTB/RIF for point-of-care diagnosis of TB in high-HIV burden, resource-limited countries: Hype or hope? Expert Review of Molecular Diagnostics, 10, 937–946.

    Google Scholar 

  • van Zyl, L., du Plessis, J., & Viljoen, J. (2015). Cutaneous tuberculosis overview and current treatment regimens. Tuberculosis, 95, 629–638.

    Google Scholar 

  • Varma, J. N. R., Kumar, T. S., Prasanthi, B., & Ratna, J. V. (2015). Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: Efficiency for alveolar macrophage targeting. Indian Journal of Pharmaceutical Sciences, 77, 258–266.

    CAS  Google Scholar 

  • Vashist, A., Vashist, A., Gupta, Y. K., & Ahmad, S. (2014). Recent advances in hydrogel based drug delivery systems for the human body. Journal of Materials Chemistry B, 2, 147–166.

    CAS  Google Scholar 

  • Videira, M. A., Botelho, M. F., Santos, A. C., Gouveia, L. F., de Lima, J. J., & Almeida, A. J. (2002). Lymphatic uptake of pulmonary delivered radiolabelled solid lipid nanoparticles. Journal of Drug Targeting, 10, 607–613.

    CAS  Google Scholar 

  • Vyas, S. P., Kannan, M. E., Jain, S., Mishra, V., & Singh, P. (2004). Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. International Journal of Pharmaceutics, 269, 37–49.

    CAS  Google Scholar 

  • Wallis, R. S., & Hafner, R. (2015). Advancing host-directed therapy for tuberculosis. Nature Reviews Immunology, 15, 255–263.

    CAS  Google Scholar 

  • Wang, S., Xu, F., & Demirci, U. (2010). Advances in develo** HIV-1 viral load assays for resource-limited settings. Biotechnology Advances, 28, 770–781.

    CAS  Google Scholar 

  • WHO. (2011). Global tuberculosis control. Retrieved Jan 26, 2012 from http://www.who.int/tb/publications/global_report/en/2011.

  • WHO. (2015a). Global tuberculosis report 2015. WHO Library Cataloguing-in-Publication Data.

    Google Scholar 

  • WHO. (2015b). The use of delamanid in the treatment of multidrug-resistant tuberculosis. WHO Library Cataloguing-in-Publication Data.

    Google Scholar 

  • Wijagkanalan, W., Kawakami, S., Takenaga, M., Igarashi, R., Yamashita, F., & Hashida, M. (2008). Efficient targeting to alveolar macrophages by intratracheal administration of mannosylated liposomes in rats. Journal of Controlled Release, 125, 121–130.

    CAS  Google Scholar 

  • Willis, L., Hayes, D., Jr., & Mansour, H. M. (2012). Therapeutic liposomal dry powder inhalation aerosols for targeted lung delivery. Lung, 190, 251–262.

    CAS  Google Scholar 

  • **e, H., Mire, J., Kong, Y., Chang, M., Hassounah, H. A., Thornton, C. N., et al. (2012). Rapid point-of-care detection of the tuberculosis pathogen using a BlaC-specific fluorogenic probe. Nature Chemistry, 4, 802–809.

    CAS  Google Scholar 

  • Yadav, A. B., Singh, A. K., Verma, R. K., Mohan, M., Agrawal, A. K., & Misra, A. (2011). The devil’s advocacy: When and why inhaled therapies for tuberculosis may not work. Tuberculosis, 91, 65–66.

    Google Scholar 

  • Yeo, W. H., Liu, S., Chung, J. H., Liu, Y. L., & Lee, K. H. (2009). Rapid detection of Mycobacterium tuberculosis cells by using microtip-based immunoassay. Analytical and Bioanalytical Chemistry, 393, 1593–1600.

    CAS  Google Scholar 

  • Yu, W., Liu, C., Liu, Y., Zhang, N., & Xu, W. (2010). Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharmaceutical Research, 27, 1584–1596.

    CAS  Google Scholar 

  • Zumla, A., Chakaya, J., Centis, R., D’Ambrosio, L., Mwaba, P., Bates, M., et al. (2015). Tuberculosis treatment and management—An update on treatment regimens, trials, new drugs, and adjunct therapies. The Lancet Respiratory Medicine, 3, 220–234.

    Google Scholar 

  • Zwerling, A., Behr, M. A., Verma, A., Brewer, T. F., Menzies, D., & Pai, M. (2011). The BCG World Atlas: A database of global BCG vaccination policies and practices. PLoS Medicine, 8, e1001012.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Naser Dakkah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dakkah, A.N., Bataineh, Y., Jaidi, B.A.A., Bayan, M.F., Nimer, N.A. (2020). Nanomedicines in Tuberculosis: Diagnosis, Therapy and Nanodrug Delivery. In: Krishnan, A., Chuturgoon, A. (eds) Integrative Nanomedicine for New Therapies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-36260-7_13

Download citation

Publish with us

Policies and ethics

Navigation