Engineering Oriented Scaffolds for Directing Neuronal Regeneration

  • Chapter
  • First Online:
Virtual Prototy** & Bio Manufacturing in Medical Applications
  • 510 Accesses

Abstract

Following nervous system injuries, such as peripheral or spinal cord injuries, severed nerves must regenerate to reinnervate tissues and restore lost-functionality. In many peripheral nerve injuries surgical intervention is required to bridge the gaps created and facilitate regrowth. The gold standard for peripheral nerve repair remains end-to-end suturing and nerve grafting, yet, these still present unmet challenges and limitation including misalignment of regenerating axons. Following spinal cord injuries currently there are no therapies capable of complete nerve restoration. Tissue engineering strategies include the design of structured tissue-like platforms to support growth and facilitate reconstructions of damaged tissues for both the peripheral and the central nervous systems. In the last two decades efforts to increase accuracy of regeneration through engineering growth-and-alignment promoting platforms have emerged as potential alternatives for grafting techniques, demonstrating advantageous effects in vitro and in vivo. This chapter reviews tissue engineering techniques and advanced fabrication strategies for oriented scaffolds and nerve repair conduits developed to aid nerve repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C.E. Schmidt, J.B. Leach, Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5, 293–347 (2003)

    Article  Google Scholar 

  2. T. Matsuyama, M. Mackay, R. Midha, Peripheral nerve repair and grafting techniques: a review. Neurol. Med. Chir. (Tokyo) 40(187–99), 187 (2000)

    Article  Google Scholar 

  3. A.B. Huber, A.L. Kolodkin, D.D. Ginty, J.-F. Cloutier, Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu. Rev. Neurosci. 26, 509–563 (2003)

    Article  Google Scholar 

  4. S. Geraldo, P.R. Gordon-Weeks, P.C. Letourneau, Cytoskeletal dynamics in growth-cone steering. J. Cell Sci. 122, 3595–3604 (2009)

    Article  Google Scholar 

  5. D.M. Suter, P. Forscher, Substrate-cytoskeletal coupling as a mechanism for the regulation of growth cone motility and guidance. J. Neurobiol. 44, 97–113 (2000)

    Article  Google Scholar 

  6. M. Asplund, M. Nilsson, A. Jacobsson, H. von Holst, Incidence of traumatic peripheral nerve injuries and amputations in Sweden between 1998 and 2006. Neuroepidemiology 32, 217–228 (2009)

    Article  Google Scholar 

  7. C.A. Taylor, D. Braza, J.B. Rice, T. Dillingham, The incidence of peripheral nerve injury in extremity trauma. Am. J. Phys. Med. Rehabil. 87, 381–385 (2008)

    Article  Google Scholar 

  8. H.J. Seddon, Three types of nerve injury. Brain 66, 237–288 (1943)

    Article  Google Scholar 

  9. S. Sunderland, Rate of regeneration of sensory nerve fibers. Arch. Neurol. Psychiatry 58, 1 (1947)

    Article  Google Scholar 

  10. M.F. Griffin, M. Malahias, S. Hindocha, S.K. Wasim, Peripheral nerve injury: principles for repair and regeneration. Open Orthop. J. 8, 199–203 (2014)

    Article  Google Scholar 

  11. R.M.G. Menorca, T.S. Fussell, J.C. Elfar, Nerve physiology: mechanisms of injury and recovery. Hand Clin. 29, 317–330 (2013)

    Article  Google Scholar 

  12. S.E. Mackinnon, A.L. Dellon, Surgery of the Peripheral Nerve (Thieme Medical Publishers, New York, 1988)

    Google Scholar 

  13. A.L. Osterman, The double crush syndrome. Orthop. Clin. North Am. 19, 147–155 (1988)

    Article  Google Scholar 

  14. W. Tetzlaff, S.W. Alexander, F.D. Miller, M.A. Bisby, Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J. Neurosci. 1, 2528–2544 (1991)

    Article  Google Scholar 

  15. F. Reichert, A. Saada, S. Rotshenker, Peripheral nerve injury induces Schwann cells to express two macrophage phenotypes: Phagocytosis and the galactose-specific lectin MAC-2. J. Neurosci. 14, 3231–3245 (1994)

    Article  Google Scholar 

  16. S.P. Frostick, Q. Yin, G.J. Kemp, Schwann cells, neurotrophic factors, and peripheral nerve regeneration. Microsurgery 18, 397–405 (1998)

    Article  Google Scholar 

  17. M.G. Burnett, E.L. Zager, Pathophysiology of peripheral nerve injury: a brief review. Neurosurg. Focus. 16, E1 (2004)

    Article  Google Scholar 

  18. Z. Roganovic, G. Pavlicevic, Difference in recovery potential of peripheral nerves after graft repairs. Neurosurgery 59, 621–633 (2006)

    Article  Google Scholar 

  19. R.D. Madison, S.J. Archibald, R. Lacin, C. Krarup, Factors contributing to preferential motor reinnervation in the primate peripheral nervous system. J. Neurosci. 19, 11007–11016 (1999)

    Article  Google Scholar 

  20. J. Ijkema-Paassen, M.F. Meek, A. Gramsbergen, Reinnervation of muscles after transection of the sciatic nerve in adult rats. Muscle Nerve 25, 891–897 (2002)

    Article  Google Scholar 

  21. S.K. Lee, S.W. Wolfe, Peripheral nerve injury and repair. J. Am. Acad. Orthop. Surg. 8, 243–252 (2000)

    Article  Google Scholar 

  22. R.G. Sabongi, M. Fernandes, J.B.G. Dos Santos, Peripheral nerve regeneration with conduits: use of vein tubes. Neural Regen. Res. 10, 529–533 (2015)

    Article  Google Scholar 

  23. B. Rinker, J.Y. Liau, A prospective randomized study comparing woven polyglycolic acid and autogenous vein conduits for reconstruction of digital nerve gaps. J. Hand Surg. Am. 36, 775–781 (2011)

    Article  Google Scholar 

  24. G. Lundborg, B. Rosén, L. Dahlin, J. Holmberg, I. Rosén, Tubular repair of the median or ulnar nerve in the human forearm: A 5-year follow-up. J. Hand Surg. Am. 29, 100–107 (2004)

    Article  Google Scholar 

  25. G. Lundborg, A 25-year perspective of peripheral nerve surgery: Evolving neuroscientific concepts and clinical significance. J. Hand Surg. Am. 25, 391–414 (2000)

    Article  Google Scholar 

  26. F. Stang, G. Keilhoff, H. Fansa, Biocompatibility of different nerve tubes. Materials (Basel). 2, 1480–1507 (2009)

    Article  Google Scholar 

  27. D.J. Gerth, J. Tashiro, S.R. Thaller, Clinical outcomes for conduits and scaffolds in peripheral nerve repair. World J. Clin. Cases 3, 141–147 (2015)

    Article  Google Scholar 

  28. G. Costa Serrão de Araújo, B. Couto Neto, R. Harley Santos Botelho, M. Carpi Malta, Clinical evaluation after peripheral nerve repair with caprolactone neurotube. HAND 12, 168–174 (2017)

    Article  Google Scholar 

  29. A. Arnaout, C. Fontaine, C. Chantelot, Sensory recovery after primary repair of palmar digital nerves using a Revolnerv® collagen conduit: a prospective series of 27 cases. Chir. Main 33, 279–285 (2014)

    Article  Google Scholar 

  30. J.S. Taras, S.M. Jacoby, C.J. Lincoski, Reconstruction of digital nerves with collagen conduits. J. Hand Surg. Am. 36, 1441–1446 (2011)

    Article  Google Scholar 

  31. J. Lohmeyer, F. Siemers, H.-G. Machens, P. Mailänder, The clinical use of artificial nerve conduits for digital nerve repair: a prospective cohort study and literature review. J. Reconstr. Microsurg. 25, 055–061 (2009)

    Article  Google Scholar 

  32. W.W. Ashley, T. Weatherly, T.S. Park, Collagen nerve guides for surgical repair of brachial plexus birth injury. J. Neurosurg. Pediatr. 105, 452–456 (2006)

    Article  Google Scholar 

  33. K.J. Wangensteen, L.K. Kalliainen, Collagen tube conduits in peripheral nerve repair: a retrospective analysis. Hand 5, 273–277 (2010)

    Article  Google Scholar 

  34. S. Kehoe, X.F. Zhang, D. Boyd, FDA approved guidance conduits and wraps for peripheral nerve injury: A review of materials and efficacy. Injury 43, 553–572 (2012)

    Article  Google Scholar 

  35. E.L. Whitlock et al., Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 39, 787–799 (2009)

    Article  Google Scholar 

  36. A.R. Nectow, K.G. Marra, D.L. Kaplan, Biomaterials for the development of peripheral nerve guidance conduits. Tissue Eng. Part B Rev. 18, 40–50 (2012)

    Article  Google Scholar 

  37. R. Deumens et al., Repairing injured peripheral nerves: bridging the gap. Prog. Neurobiol. 92, 245–276 (2010)

    Article  Google Scholar 

  38. National Spinal Cord Injury Statistical Center, Spinal cord injury facts and figures at a glance. J. Spinal Cord Med. 35, 197–198 (2012)

    Article  Google Scholar 

  39. J.W. McDonald, C. Sadowsky, Spinal-cord injury. Lancet 359, 417–425 (2002)

    Article  Google Scholar 

  40. I. Bollaerts, J. Van Houcke, L. Andries, L. De Groef, L. Moons, Neuroinflammation as fuel for axonal regeneration in the injured vertebrate central nervous system. Mediators Inflamm. 2017, 1–14 (2017)

    Article  Google Scholar 

  41. T. Hagg, M. Oudega, Degenerative and spontaneous regenerative processes after spinal cord injury. J. Neurotrauma 23, 263–280 (2006)

    Article  Google Scholar 

  42. K. Nas, L. Yazmalar, V. Şah, A. Aydın, K. Öneş, Rehabilitation of spinal cord injuries. World J. Orthop. 6, 8–16 (2015)

    Article  Google Scholar 

  43. M.S. Nash, Exercise as a health-promoting activity following spinal cord injury. J. Neurol. Phys. Ther. 29, 87–103, 106 (2005)

    Article  Google Scholar 

  44. M.G. Fehlings et al., Early versus delayed decompression for traumatic cervical spinal cord injury: results of the Surgical Timing in Acute Spinal Cord Injury Study (STASCIS). PLoS One 7, e32037 (2012)

    Article  Google Scholar 

  45. P.M. Richardson, U.M. McGuinness, A.J. Aguayo, Axons from CNS neurons regenerate into PNS grafts. Nature 284, 264–265 (1980)

    Article  Google Scholar 

  46. X. Wang, X.-M. Xu, Long-term survival, axonal growth-promotion, and myelination of Schwann cells grafted into contused spinal cord in adult rats. Exp. Neurol. 261, 308–319 (2014)

    Article  Google Scholar 

  47. K.D. Anderson et al., Safety of autologous human Schwann cell transplantation in subacute thoracic spinal cord injury. J. Neurotrauma 34, 2950–2963 (2017)

    Article  Google Scholar 

  48. Y. Ogawa et al., Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J. Neurosci. Res. 69, 925–933 (2002)

    Article  Google Scholar 

  49. J.W. McDonald et al., Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999)

    Article  Google Scholar 

  50. P. Lu, G. Woodruff, Y. Wang, L. Graham, M. Hunt, D. Wu, E. Boehle, R. Ahmad, G. Poplawski, J. Brock, L.S. Goldstein, Long-distance axonal growth from human induced pluripotent stem cells after spinal cord injury. Neuron 83, 789–796 (2014)

    Article  Google Scholar 

  51. V.R. Dasari, K.K. Veeravalli, D.H. Dinh, Mesenchymal stem cells in the treatment of spinal cord injuries: a review. World J. Stem Cells 6, 120–133 (2014)

    Article  Google Scholar 

  52. J.C. Ra et al., Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans. Stem Cells Dev. 20, 1297–1308 (2011)

    Article  Google Scholar 

  53. M.V. Mendonça et al., Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury. Stem Cell Res Ther 5, 126 (2014)

    Article  Google Scholar 

  54. P. Tabakow et al., Transplantation of autologous olfactory ensheathing cells in complete human spinal cord injury. Cell Transplant. 22, 1591–1612 (2013)

    Article  Google Scholar 

  55. B.J. Dlouhy, O. Awe, R.C. Rao, P.A. Kirby, P.W. Hitchon, Autograft-derived spinal cord mass following olfactory mucosal cell transplantation in a spinal cord injury patient. J. Neurosurg. Spine 21, 618–622 (2014)

    Article  Google Scholar 

  56. S. Thuret, L.D.F. Moon, F.H. Gage, Therapeutic interventions after spinal cord injury. Nat. Rev. Neurosci. 7, 628–643 (2006)

    Article  Google Scholar 

  57. A.F. Cristante, T.E.P. de Barros Filho, R.M. Marcon, O.B. Letaif, I.D. da Rocha, Therapeutic approaches for spinal cord injury. Clinics (Sao Paulo) 67(1219–24), 1219 (2012)

    Article  Google Scholar 

  58. A.R. Blight, M.P. Zimber, Acute spinal cord injury: pharmacotherapy and drug development perspectives. Curr. Opin. Investig. Drugs 2, 801–808 (2001)

    Google Scholar 

  59. S. Kabu, Y. Gao, B.K. Kwon, V. Labhasetwar, Drug delivery, cell-based therapies, and tissue engineering approaches for spinal cord injury. J. Control. Release 219, 141–154 (2015)

    Article  Google Scholar 

  60. M. Wang et al., Bioengineered scaffolds for spinal cord repair. Tissue Eng. Part B Rev. 17, 177–194 (2011)

    Article  Google Scholar 

  61. B. Shrestha et al., Repair of injured spinal cord using biomaterial scaffolds and stem cells. Stem Cell Res Ther 5, 91 (2014)

    Article  Google Scholar 

  62. J. Ganz et al., Implantation of 3D constructs embedded with oral mucosa-derived cells induces functional recovery in rats with complete spinal cord transection. Front. Neurosci. 11, 589 (2017)

    Article  Google Scholar 

  63. C.D. Pritchard et al., Establishing a model spinal cord injury in the African green monkey for the preclinical evaluation of biodegradable polymer scaffolds seeded with human neural stem cells. J. Neurosci. Methods 188, 258–269 (2010)

    Article  Google Scholar 

  64. A.P. Pêgo et al., Regenerative medicine for the treatment of spinal cord injury: more than just promises? J. Cell. Mol. Med. 16, 2564–2582 (2012)

    Article  Google Scholar 

  65. X. Gu, F. Ding, Y. Yang, J. Liu, Construction of tissue engineered nerve grafts and their application in peripheral nerve regeneration. Prog. Neurobiol. 93, 204–230 (2011)

    Article  Google Scholar 

  66. P.C. Georges, W.J. Miller, D.F. Meaney, E.S. Sawyer, P.A. Janmey, Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys. J. 90, 3012–3018 (2006)

    Article  Google Scholar 

  67. R.K. Willits, S.L. Skornia, Effect of collagen gel stiffness on neurite extension. J. Biomater. Sci. Polym. Ed. 15, 1521–1531 (2004)

    Article  Google Scholar 

  68. L.A. Flanagan, Y.-E. Ju, B. Marg, M. Osterfield, P.A. Janmey, Neurite branching on deformable substrates. Neuroreport 13, 2411–2415 (2002)

    Article  Google Scholar 

  69. M.T. Prange, S.S. Margulies, Regional, directional, and age-dependent properties of the brain undergoing large deformation. J. Biomech. Eng. 124, 244–252 (2002)

    Article  Google Scholar 

  70. B.L. Rydevik et al., An in vitro mechanical and histological study of acute stretching on rabbit tibial nerve. J. Orthop. Res. 8, 694–701 (1990)

    Article  Google Scholar 

  71. K.S. Topp, B.S. Boyd, Structure and biomechanics of peripheral nerves: Nerve responses to physical stresses and implications for physical therapist practice. Phys. Ther. 86, 92–109 (2006)

    Article  Google Scholar 

  72. G.E. Rooney et al., Rigid fixation of the spinal column improves scaffold alignment and prevents scoliosis in the transected rat spinal cord. Spine (Phila. Pa. 1976) 33, E914–E919 (2008)

    Article  Google Scholar 

  73. J.S. Belkas, M.S. Shoichet, R. Midha, Peripheral nerve regeneration through guidance tubes. Neurol. Res. 26, 151–160 (2004)

    Article  Google Scholar 

  74. W. Young, Spinal cord regeneration, in Neural Regeneration (Elsevier, Amsterdam, 2015), pp. 383–399. https://doi.org/10.1016/B978-0-12-801732-6.00025-2

  75. C.E. Hill, M.S. Beattie, J.C. Bresnahan, Degeneration and sprouting of identified descending supraspinal axons after contusive spinal cord injury in the rat. Exp. Neurol. 171, 153–169 (2001)

    Article  Google Scholar 

  76. Y. Haile et al., The effect of modified polysialic acid based hydrogels on the adhesion and viability of primary neurons and glial cells. Biomaterials 29, 1880–1891 (2008)

    Article  Google Scholar 

  77. Y. Iijima, T. Ajiki, A. Murayama, K. Takeshita, Effect of artificial nerve conduit vascularization on peripheral nerve in a necrotic bed. Plast. Reconstr. Surg. Glob. Open 4, e665 (2016)

    Article  Google Scholar 

  78. Y.-T. Kim, V.K. Haftel, S. Kumar, R.V. Bellamkonda, The role of aligned polymer fiber-based constructs in the bridging of long peripheral nerve gaps. Biomaterials 29, 3117–3127 (2008)

    Article  Google Scholar 

  79. R. Bellamkonda, Peripheral nerve regeneration: an opinion on channels, scaffolds and anisotropy. Biomaterials 27, 3515–3518 (2006)

    Google Scholar 

  80. H.B. Wang et al., Creation of highly aligned electrospun poly-L-lactic acid fibers for nerve regeneration applications. J. Neural Eng. 6, 16001 (2009)

    Article  Google Scholar 

  81. D.M. Thompson, H.M. Buettner, Oriented Schwann cell monolayers for directed neurite outgrowth. Ann. Biomed. Eng. 32, 1121–1131 (2004)

    Article  Google Scholar 

  82. M. Georgiou et al., Engineered neural tissue for peripheral nerve repair. Biomaterials 34, 7335–7343 (2013)

    Article  Google Scholar 

  83. X.M. Xu, V. Guénard, N. Kleitman, M.B. Bunge, Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J. Comp. Neurol. 351, 145–160 (1995)

    Article  Google Scholar 

  84. X. Cao, M.S. Schoichet, Delivering neuroactive molecules from biodegradable microspheres for application in central nervous system disorders. Biomaterials 20, 329–339 (1999)

    Article  Google Scholar 

  85. N. Zilony et al., Prolonged controlled delivery of nerve growth factor using porous silicon nanostructures. J. Control. Release 257, 51–59 (2017)

    Article  Google Scholar 

  86. L.A. Pfister, M. Papaloïzos, H.P. Merkle, B. Gander, Nerve conduits and growth factor delivery in peripheral nerve repair. J. Peripher. Nerv. Syst. 12, 65–82 (2007)

    Article  Google Scholar 

  87. R. Sullivan, T. Dailey, K. Duncan, N. Abel, C.V. Borlongan, Peripheral nerve injury: stem cell therapy and peripheral nerve transfer. Int. J. Mol. Sci. 17, 2101 (2016)

    Article  Google Scholar 

  88. E.G. Fine, R.F. Valentini, R. Bellamkonda, P. Aebischer, Improved nerve regeneration through piezoelectric vinylidenefluoride-trifluoroethylene copolymer guidance channels. Biomaterials 12, 775–780 (1991)

    Article  Google Scholar 

  89. A. Subramanian, U.M. Krishnan, S. Sethuraman, Development of biomaterial scaffold for nerve tissue engineering: biomaterial mediated neural regeneration. J. Biomed. Sci. 16, 108 (2009)

    Article  Google Scholar 

  90. D. Hoffman-Kim, J.A. Mitchel, R.V. Bellamkonda, Topography, cell response, and nerve regeneration. Annu. Rev. Biomed. Eng. 12, 203–231 (2010)

    Article  Google Scholar 

  91. C. Chaubaroux et al., Cell alignment driven by mechanically induced collagen fiber alignment in collagen/alginate coatings. Tissue Eng. Part C Methods 21, 881–888 (2015)

    Article  Google Scholar 

  92. N. Dubey, P.C. Letourneau, R.T. Tranquillo, Guided neurite elongation and Schwann cell invasion into magnetically aligned collagen in simulated peripheral nerve regeneration. Exp. Neurol. 158, 338–350 (1999)

    Article  Google Scholar 

  93. B.D. Walters, J.P. Stegemann, Strategies for directing the structure and function of three-dimensional collagen biomaterials across length scales. Acta Biomater. 10, 1488–1501 (2014)

    Article  Google Scholar 

  94. P. Lee, R. Lin, J. Moon, L.P. Lee, Microfluidic alignment of collagen fibers for in vitro cell culture. Biomed. Microdevices 8, 35–41 (2006)

    Article  Google Scholar 

  95. C.M. Voge, M. Kariolis, R.A. MacDonald, J.P. Stegemann, Directional conductivity in SWNT-collagen-fibrin composite biomaterials through strain-induced matrix alignment. J. Biomed. Mater. Res. Part A 86A, 269–277 (2008)

    Article  Google Scholar 

  96. T.D. Nguyen et al., Effects of cell seeding and cyclic stretch on the fiber remodeling in an extracellular matrix-derived bioscaffold. Tissue Eng. Part A 15, 957–963 (2009)

    Article  Google Scholar 

  97. A.J. Ryan et al., A physicochemically optimized and neuroconductive biphasic nerve guidance conduit for peripheral nerve repair. Adv. Healthc. Mater. 6, 1700954 (2017)

    Article  Google Scholar 

  98. S. Gnavi et al., The effect of electrospun gelatin fibers alignment on Schwann cell and axon behavior and organization in the perspective of artificial nerve design. Int. J. Mol. Sci. 16, 12925–12942 (2015)

    Article  Google Scholar 

  99. M.C. Dodla, R.V. Bellamkonda, Differences between the effect of anisotropic and isotropic laminin and nerve growth factor presenting scaffolds on nerve regeneration across long peripheral nerve gaps. Biomaterials 29, 33–46 (2008)

    Article  Google Scholar 

  100. J. Du et al., Prompt peripheral nerve regeneration induced by a hierarchically aligned fibrin nanofiber hydrogel. Acta Biomater. 55, 296–309 (2017)

    Article  Google Scholar 

  101. S. England, A. Rajaram, D.J. Schreyer, X. Chen, Bioprinted fibrin-factor XIII-hyaluronate hydrogel scaffolds with encapsulated Schwann cells and their in vitro characterization for use in nerve regeneration. Bioprinting 5, 1–9 (2017)

    Article  Google Scholar 

  102. N. Dubey, P.C. Letourneau, R.T. Tranquillo, Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties. Biomaterials 22, 1065–1075 (2001)

    Article  Google Scholar 

  103. F. Mottaghitalab et al., A biosynthetic nerve guide conduit based on silk/SWNT/fibronectin nanocomposite for peripheral nerve regeneration. PLoS One 8, e74417 (2013)

    Article  Google Scholar 

  104. Z. Ahmed, S. Underwood, R.A. Brown, Nerve guide material made from fibronectin: assessment of in vitro properties. Tissue Eng. 9, 219–231 (2003)

    Article  Google Scholar 

  105. A. Cooper, N. Bhattarai, M. Zhang, Fabrication and cellular compatibility of aligned chitosan–PCL fibers for nerve tissue regeneration. Carbohydr. Polym. 85, 149–156 (2011)

    Article  Google Scholar 

  106. N.L. Francis et al., An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering. J. Biomed. Mater. Res. Part A 101, 3493–3503 (2013)

    Article  Google Scholar 

  107. P. Prang et al., The promotion of oriented axonal regrowth in the injured spinal cord by alginate-based anisotropic capillary hydrogels. Biomaterials 27, 3560–3569 (2006)

    Google Scholar 

  108. S. Madduri, M. Papaloïzos, B. Gander, Trophically and topographically functionalized silk fibroin nerve conduits for guided peripheral nerve regeneration. Biomaterials 31, 2323–2334 (2010)

    Article  Google Scholar 

  109. A.L. Oliveira et al., Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater. 8, 1530–1542 (2012)

    Article  Google Scholar 

  110. E. Schnell et al., Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-ε-caprolactone and a collagen/poly-ε-caprolactone blend. Biomaterials 28, 3012–3025 (2007)

    Article  Google Scholar 

  111. D.R. Nisbet, L.M.Y. Yu, T. Zahir, J.S. Forsythe, M.S. Shoichet, Characterization of neural stem cells on electrospun poly(ε-caprolactone) submicron scaffolds: evaluating their potential in neural tissue engineering. J. Biomater. Sci. Polym. Ed. 19, 623–634 (2008)

    Article  Google Scholar 

  112. L. Flynn, P.D. Dalton, M.S. Shoichet, Fiber templating of poly(2-hydroxyethyl methacrylate) for neural tissue engineering. Biomaterials 24, 4265–4272 (2003)

    Article  Google Scholar 

  113. C.J. Pateman et al., Nerve guides manufactured from photocurable polymers to aid peripheral nerve repair. Biomaterials 49, 77–89 (2015)

    Article  Google Scholar 

  114. O. Sarig-Nadir, N. Livnat, R. Zajdman, S. Shoham, D. Seliktar, Laser photoablation of guidance microchannels into hydrogels directs cell growth in three dimensions. Biophys. J. 96, 4743–4752 (2009)

    Article  Google Scholar 

  115. F. Johansson, P. Carlberg, N. Danielsen, L. Montelius, M. Kanje, Axonal outgrowth on nano-imprinted patterns. Biomaterials 27, 1251–1258 (2006)

    Article  Google Scholar 

  116. N.M. Dowell-Mesfin et al., Topographically modified surfaces affect orientation and growth of hippocampal neurons. J. Neural Eng. 1, 78–90 (2004)

    Article  Google Scholar 

  117. M.J. Mahoney, R.R. Chen, J. Tan, W.M. Saltzman, The influence of microchannels on neurite growth and architecture. Biomaterials 26, 771–778 (2005)

    Article  Google Scholar 

  118. K. Baranes, N. Chejanovsky, N. Alon, A. Sharoni, O. Shefi, Topographic cues of nano-scale height direct neuronal growth pattern. Biotechnol. Bioeng. 109, 1791–1797 (2012)

    Article  Google Scholar 

  119. C. Simitzi et al., Laser fabricated discontinuous anisotropic microcanonical substrates as a new model scaffold to control the directionality of neuronal network outgrowth. Biomaterials 67, 115–128 (2015)

    Article  Google Scholar 

  120. A. Ferrari, P. Faraci, M. Cecchini, F. Beltram, The effect of alternative neuronal differentiation pathways on PC12 cell adhesion and neurite alignment to nanogratings. Biomaterials 31, 2565–2573 (2010)

    Article  Google Scholar 

  121. D.Y. Fozdar, J.Y. Lee, C.E. Schmidt, S. Chen, Selective axonal growth of embryonic hippocampal neurons according to topographic features of various sizes and shapes. Int. J. Nanomedicine 6, 45–57 (2010)

    Article  Google Scholar 

  122. N. Bhardwaj, S.C. Kundu, Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010)

    Article  Google Scholar 

  123. J.D. Schiffman, C.L. Schauer, A review: Electrospinning of biopolymer nanofibers and their applications. Polym. Rev. 48, 317–352 (2008)

    Article  Google Scholar 

  124. Q.P. Pham, U. Sharma, A.G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue Eng. 12, 1197–1211 (2006)

    Article  Google Scholar 

  125. R. Murugan, S. Ramakrishna, Design strategies of tissue engineering scaffolds with controlled fiber orientation. Tissue Eng. 13, 1845–1866 (2007)

    Article  Google Scholar 

  126. F. Yang, R. Murugan, S. Wang, S. Ramakrishna, Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 26, 2603–2610 (2005)

    Article  Google Scholar 

  127. D. Gupta et al., Aligned and random nanofibrous substrate for the in vitro culture of Schwann cells for neural tissue engineering. Acta Biomater. 5, 2560–2569 (2009)

    Article  Google Scholar 

  128. J.M. Corey et al., Aligned electrospun nanofibers specify the direction of dorsal root ganglia neurite growth. J. Biomed. Mater. Res. Part A 83A, 636–645 (2007)

    Article  Google Scholar 

  129. Y.I. Cho, J.S. Choi, S.Y. Jeong, H.S. Yoo, Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells. Acta Biomater. 6, 4725–4733 (2010)

    Article  Google Scholar 

  130. B. Lanfer et al., Directed growth of adult human white matter stem cell–derived neurons on aligned fibrillar collagen. Tissue Eng. Part A 16, 1103–1113 (2010)

    Article  Google Scholar 

  131. A. Odawara, M. Gotoh, I. Suzuki, A three-dimensional neuronal culture technique that controls the direction of neurite elongation and the position of soma to mimic the layered structure of the brain. RSC Adv. 3, 23620 (2013)

    Article  Google Scholar 

  132. B.N. Johnson et al., 3D printed anatomical nerve regeneration pathways. Adv. Funct. Mater. 25, 6205–6217 (2015)

    Article  Google Scholar 

  133. A. Subramanian, U.M. Krishnan, S. Sethuraman, Fabrication of uniaxially aligned 3D electrospun scaffolds for neural regeneration. Biomed. Mater. 6, 25004 (2011)

    Article  Google Scholar 

  134. Y. Ouyang, C. Huang, Y. Zhu, C. Fan, Q. Ke, Fabrication of seamless electrospun collagen/PLGA conduits whose walls comprise highly longitudinal aligned nanofibers for nerve regeneration. J. Biomed. Nanotechnol. 9, 931–943 (2013)

    Article  Google Scholar 

  135. T. Liu, J.D. Houle, J. Xu, B.P. Chan, S.Y. Chew, Nanofibrous collagen nerve conduits for spinal cord repair. Tissue Eng. Part A 18, 1057–1066 (2012)

    Article  Google Scholar 

  136. S. Jana, M. Zhang, Fabrication of 3D aligned nanofibrous tubes by direct electrospinning. J. Mater. Chem. B 1, 2575 (2013)

    Article  Google Scholar 

  137. A. Bozkurt et al., In vitro assessment of axonal growth using dorsal root ganglia explants in a novel three-dimensional collagen matrix. Tissue Eng. 13, 2971–2979 (2007)

    Article  Google Scholar 

  138. S.G.A. van Neerven et al., Two-component collagen nerve guides support axonal regeneration in the rat peripheral nerve injury model. J. Tissue Eng. Regen. Med. 11, 3349 (2016). https://doi.org/10.1002/term.2248

    Article  Google Scholar 

  139. A. Bozkurt et al., Clinical and biometrical 12-month follow-up in patients after reconstruction of the sural nerve biopsy defect by the collagen-based nerve guide Neuromaix. Eur. J. Med. Res. 22, 34 (2017)

    Article  Google Scholar 

  140. J.-Y. Lee et al., The effect of collagen nerve conduits filled with collagen-glycosaminoglycan matrix on peripheral motor nerve regeneration in a rat model. J. Bone Jt. Surg. Am. 94, 2084–2091 (2012)

    Article  Google Scholar 

  141. N. Wang et al., Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury. J. Tissue Eng. Regen. Med. 12, e1154 (2017). https://doi.org/10.1002/term.2450

    Article  Google Scholar 

  142. S. Yoshii, S. Ito, M. Shima, A. Taniguchi, M. Akagi, Functional restoration of rabbit spinal cord using collagen-filament scaffold. J. Tissue Eng. Regen. Med. 3, 19–25 (2009)

    Article  Google Scholar 

  143. S. Han et al., The collagen scaffold with collagen binding BDNF enhances functional recovery by facilitating peripheral nerve infiltrating and ingrowth in canine complete spinal cord transection. Spinal Cord 52, 867–873 (2014)

    Article  Google Scholar 

  144. H. Okamoto et al., Recovery process of sciatic nerve defect with novel bioabsorbable collagen tubes packed with collagen filaments in dogs. J. Biomed. Mater. Res. Part A 92(3), 859–868 (2009)

    Google Scholar 

  145. K. Matsumoto et al., Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: A histological and electrophysiological evaluation of regenerated nerves. Brain Res. 868, 315–328 (2000)

    Article  Google Scholar 

  146. T. Arai, G. Lundborg, L.B. Dahlin, Bioartificial nerve graft for bridging extended nerve defects in rat sciatic nerve based on resorbable guiding filaments. Scand. J. Plast. Reconstr. Surg. Hand Surg. 34, 101–108 (2000)

    Article  Google Scholar 

  147. X. Wang et al., Dog sciatic nerve regeneration across a 30-mm defect bridged by a chitosan/PGA artificial nerve graft. Brain 128, 1897–1910 (2005)

    Article  Google Scholar 

  148. W. Fan et al., Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: A case study. Microsurgery 28, 238–242 (2008)

    Article  Google Scholar 

  149. M.B. Chen, F. Zhang, W.C. Lineaweaver, Luminal fillers in nerve conduits for peripheral nerve repair. Ann. Plast. Surg. 57, 462–471 (2006)

    Article  Google Scholar 

  150. A.S. Hoffman, Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64, 18–23 (2012)

    Article  Google Scholar 

  151. O.A. Carballo-Molina, I. Velasco, Hydrogels as scaffolds and delivery systems to enhance axonal regeneration after injuries. Front. Cell. Neurosci. 9, 13 (2015)

    Article  Google Scholar 

  152. G. Dos Reis et al., Direct microfabrication of topographical and chemical cues for the guided growth of neural cell networks on polyamidoamine hydrogels. Macromol. Biosci. 10, 842–852 (2010)

    Article  Google Scholar 

  153. J.N. Hanson Shepherd et al., 3D microperiodic hydrogel scaffolds for robust neuronal cultures. Adv. Funct. Mater. 21, 47–54 (2011)

    Article  Google Scholar 

  154. N. Livnat, O. Sarig-Nadir, D. Seliktar, S. Shoham, Three-dimensional guidance of DRG neurite outgrowth using multi-photon photo-ablation, in 2009 4th International IEEE/EMBS Conference on Neural Engineering (IEEE, Piscataway, 2009), pp. 116–119 https://doi.org/10.1109/NER.2009.5109248

  155. J. Kim, J.R. Staunton, K. Tanner, Independent control of topography for 3D patterning of the ECM microenvironment. Adv. Mater. 28, 132–137 (2016)

    Article  Google Scholar 

  156. E.J. Berns et al., Aligned neurite outgrowth and directed cell migration in self-assembled monodomain gels. Biomaterials 35, 185–195 (2014)

    Article  Google Scholar 

  157. E. Verdú et al., Alignment of collagen and laminin-containing gels improve nerve regeneration within silicone tubes. Restor. Neurol. Neurosci. 20, 169–179 (2002)

    Google Scholar 

  158. M. Antman-Passig, S. Levy, C. Gartenberg, H. Schori, O. Shefi, Mechanically oriented 3D collagen hydrogel for directing neurite growth. Tissue Eng. Part A 23, 403 (2017)

    Article  Google Scholar 

  159. E. East, D.B. de Oliveira, J.P. Golding, J.B. Phillips, Alignment of astrocytes increases neuronal growth in three-dimensional collagen gels and is maintained following plastic compression to form a spinal cord repair conduit. Tissue Eng. Part A 16, 3173–3184 (2010)

    Article  Google Scholar 

  160. C. O’Rourke, R. Drake, G.W. Cameron, A. Jane Loughlin, J.B. Phillips, Optimising contraction and alignment of cellular collagen hydrogels to achieve reliable and consistent engineered anisotropic tissue. J. Biomater. Appl. 30, 599–607 (2015)

    Article  Google Scholar 

  161. F. Gonzalez-Perez et al., Stabilization, rolling, and addition of other extracellular matrix proteins to collagen hydrogels improve regeneration in chitosan guides for long peripheral nerve gaps in rats. Neurosurgery 80, 465–474 (2017)

    Article  Google Scholar 

  162. D.F. Williams, There is no such thing as a biocompatible material. Biomaterials 35, 10009–10014 (2014)

    Article  Google Scholar 

  163. G.D. Sterne, R.A. Brown, C.J. Green, G. Terenghi, Neurotrophin-3 delivered locally via fibronectin mats enhances peripheral nerve regeneration. Eur. J. Neurosci. 9, 1388–1396 (1997)

    Article  Google Scholar 

  164. S.Y. Chew, R. Mi, A. Hoke, K.W. Leong, Aligned protein–polymer composite fibers enhance nerve regeneration: a potential tissue-engineering platform. Adv. Funct. Mater. 17, 1288–1296 (2007)

    Article  Google Scholar 

  165. Y.-C. Chang et al., Multichanneled nerve guidance conduit with spatial gradients of neurotrophic factors and oriented nanotopography for repairing the peripheral nervous system. ACS Appl. Mater. Interfaces 9, 37623–37636 (2017)

    Article  Google Scholar 

  166. C.-Y. Wang et al., The effect of aligned core–shell nanofibres delivering NGF on the promotion of sciatic nerve regeneration. J. Biomater. Sci. Polym. Ed. 23, 167–184 (2012)

    Article  Google Scholar 

  167. Z. Kuihua, W. Chunyang, F. Cunyi, M. **umei, Aligned SF/P(LLA-CL)-blended nanofibers encapsulating nerve growth factor for peripheral nerve regeneration. J. Biomed. Mater. Res. Part A 102, 2680–2691 (2014)

    Article  Google Scholar 

  168. L.H. Nguyen et al., Three-dimensional aligned nanofibers-hydrogel scaffold for controlled non-viral drug/gene delivery to direct axon regeneration in spinal cord injury treatment. Sci. Rep. 7, 42212 (2017)

    Article  Google Scholar 

  169. C. Huang et al., Nerve guidance conduits from aligned nanofibers: improvement of nerve regeneration through longitudinal nanogrooves on a fiber surface. ACS Appl. Mater. Interfaces 7, 7189–7196 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orit Shefi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antman-Passig, M., Shefi, O. (2021). Engineering Oriented Scaffolds for Directing Neuronal Regeneration. In: Bidanda, B., Bártolo, P.J. (eds) Virtual Prototy** & Bio Manufacturing in Medical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-35880-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-35880-8_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-35879-2

  • Online ISBN: 978-3-030-35880-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation