Finite Size Effects in Topological Quantum Phase Transitions

  • Conference paper
  • First Online:
Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 239))

Abstract

The interest in the topological properties of materials brings into question the problem of topological phase transitions. As a control parameter is varied, one may drive a system through phases with different topological properties. What is the nature of these transitions and how can we characterize them? The usual Landau approach, with the concept of an order parameter that is finite in a symmetry broken phase is not useful in this context. Topological transitions do not imply a change of symmetry and there is no obvious order parameter. A crucial observation is that they are associated with a diverging length that allows a scaling approach and to introduce critical exponents which define their universality classes. At zero temperature the critical exponents obey a quantum hyperscaling relation. We study finite size effects at topological transitions and show they exhibit universal behavior due to scaling. We discuss the possibility that they become discontinuous as a consequence of these effects and point out the relevance of our study for real systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Alicea, Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  2. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  3. S.-Q. Shen, Topological insulators, in Dirac Equation in Condensed Matter. Springer Series in Solid-State Sciences, 2nd edn., vol. 187 (Springer, Berlin, 2017)

    Google Scholar 

  4. M.A. Continentino, Phys. B: Condens. Matter 505, A1–A2 (2017)

    Article  Google Scholar 

  5. M.A. Continentino, Quantum Scaling in Many-Body Systems: an Approach to Quantum Phase Transitions, 2nd edn. (Cambridge University Press, Cambridge, 2017)

    Google Scholar 

  6. J.M. Kosterlitz, Rev. Mod. Phys. 89, 040501 (2017)

    Google Scholar 

  7. L.D. Landau, Zh. Eksp. Teor. Fiz. 7, 19 (1937); Ukr. J. Phys. 53, 25 (2008)

    Google Scholar 

  8. A.Y. Kitaev, Physics-Uspekhi 44, 131 (2001); A. Kitaev, Ann. Phys. 303, 2 (2003)

    Article  ADS  Google Scholar 

  9. M.A. Continentino, F. Deus, H. Caldas, Phys. Lett. A378, 1561 (2014)

    Google Scholar 

  10. S.N. Kempkes, A. Quelle, C. Morais Smith, Sci. Rep. 6, 38530 (2016); A. Quelle, E. Cobanera, C. Morais Smith, Phys. Rev. B94, 075133 (2016)

    Google Scholar 

  11. M.A. Continentino, H. Caldas, D. Nozadze, N. Trivedi, Phys. Lett. A 378, 3340 (2014)

    Article  ADS  Google Scholar 

  12. W. Chen, M. Legner, A. Ruegg, M. Sigrist, Phys. Rev. B 95, 075116 (2017)

    Article  ADS  Google Scholar 

  13. E.P.L. van Nieuwenburg, A.P. Schnyder, W. Chen, Phys. Rev. B97, 155151 (2018)

    Google Scholar 

  14. M.A. Continentino, G.M. Japiassu, A. Troper, Phys. Rev. 39, 9734 (1989)

    Google Scholar 

  15. M.A. Griffith, M.A. Continentino, Phys. Rev. E 97, 012107 (2018)

    Article  ADS  Google Scholar 

  16. F. Sun, J. Ye, Phys. Rev. B 96, 035113 (2017)

    Article  ADS  Google Scholar 

  17. B. Roy, P. Goswami, V. Juri\(\check{c}\)i\(\acute{c}\), Phys. Rev. B95, 201102(R) (2017); B. Roy, M.S. Foster, Phys. Rev. X8, 011049 (2018)

    Google Scholar 

  18. M. König, S. Wiedmann, C. Bröne, A. Roth, H. Buhmann, L.W. Molenkamp, X.-L. Qi, S.-C. Zhang, Science 318(5851), 766 (2007)

    Article  ADS  Google Scholar 

  19. B.A. Bernevig, T.L. Hughes, S.-C. Zhang, Quantum spin hall effect and topological phase transition in HgTe quantum wells. Science 314, 1757 (2006)

    Article  ADS  Google Scholar 

  20. B.A. Bernevig, T. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013)

    Google Scholar 

  21. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  22. K.-I. Imura, A. Yamakage, S. Mao, A. Hotta, Y. Kuramoto, Phys. Rev. B 82, 085118 (2010)

    Google Scholar 

  23. K.-I. Imura, S. Mao, A. Yamakage, Y. Kuramoto, Nanoscale Res. Lett. 6, 358 (2011)

    Article  ADS  Google Scholar 

  24. M. Krech, The Casimir Effect in Critical Systems (World Scientific Publishing Co. Pte. Ltd., Singapore, 1994) and references within

    Google Scholar 

  25. J.G. Brankov, D.M. Danchev, N.S. Tonchev, Theory of Critical Phenomena in Finite-Size Systems: Scaling and Quantum Effects (World Scientific Publishing Co. Pte. Ltd., Singapore, 2000)

    Google Scholar 

  26. T. Gulden, M. Janas, Y. Wang, A. Kamenev, Phys. Rev. Lett. 116, 026402 (2016)

    Article  ADS  Google Scholar 

  27. A. Gambassi, J. Phys.: Conf. Ser. 161, 012037 (2009)

    Google Scholar 

  28. M.A. Griffith, M.A. Continentino, T.O. Puel, Phys. Rev. B99, 075109 (2019)

    Google Scholar 

  29. V. Juri\(\check{c}\)i\(\acute{c}\), D.S.L. Abergel, A.V. Balatsky, Phys. Rev. B95, 161403(R) (2017)

    Google Scholar 

  30. G. Krizman, B.A. Assaf, M. Orlita, T. Phuphachong, G. Bauer, G. Springholz, G. Bastard, R. Ferreira, L.A. de Vaulchier, Y. Guldner, Phys. Rev.B98, 161202(R) (2018); G. Krizman, B.A. Assaf, T. Phuphachong, G. Bauer, G. Springholz, L.A. de Vaulchier, Y. Guldner, Phys. Rev. B98, 245202 (2018)

    Google Scholar 

  31. M. Bordag, G.L. Klimchitskaya, U. Mohideen, V.M. Mostepanenko, Advances in the Casimir Effect (Oxford University Press, 2009), p. 22

    Google Scholar 

  32. J. Schiefele, C. Henkel, J. Phys. A: Math. Theor. 42, 045401 (2009)

    Article  Google Scholar 

  33. A. Flachi, M. Nitta, S. Takada, R. Yoshii, Phys. Rev. Lett. 119, 031601 (2017); A. Flachi, Phys. Rev. D86, 104047 (2012)

    Google Scholar 

  34. J.L. Collins, A. Tadich, W. Wu, L.C. Gomes, J.N.B. Rodrigues, C. Liu, J. Hellerstedt, H. Ryu, S. Tang, S.-K. Mo, S. Adam, S.A. Yang, M.S. Fuhrer, M.T. Edmonds, Nature, 564, 390 (2018)

    Article  ADS  Google Scholar 

  35. B.-J. Yang, E.-G. Moon, H. Isobe, N. Nagaosa, Nat. Phys. 10 774 (2014)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the Brazilian agencies, CNPq, CAPES and FAPERJ for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mucio A. Continentino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Continentino, M.A., Rufo, S., Rufo, G.M. (2020). Finite Size Effects in Topological Quantum Phase Transitions. In: Ferraz, A., Gupta, K., Semenoff, G., Sodano, P. (eds) Strongly Coupled Field Theories for Condensed Matter and Quantum Information Theory. Springer Proceedings in Physics, vol 239. Springer, Cham. https://doi.org/10.1007/978-3-030-35473-2_12

Download citation

Publish with us

Policies and ethics

Navigation