Physical Computability Theses

  • Chapter
  • First Online:
Quantum, Probability, Logic

Abstract

The Church-Turing thesis asserts that every effectively computable function is Turing computable. On the other hand, the physical Church-Turing Thesis (PCTT) concerns the computational power of physical systems, regardless of whether these perform effective computations. We distinguish three variants of PCTT – modest, bold and super-bold – and examine some objections to each. We highlight Itamar Pitowsky’s contributions to the formulation of these three variants of PCTT, and discuss his insightful remarks regarding their validity. The distinction between the modest and bold variants was originally advanced by Piccinini (Br J Philos Sci 62:733–769, 2011). The modest variant concerns the behavior of physical computing systems, while the bold variant is about the behavior of physical systems more generally. Both say that this behavior, when formulated in terms of some mathematical function, is Turing computable. We distinguish these two variants from a third – the super-bold variant – concerning decidability questions about the behavior of physical systems. This says, roughly, that every physical aspect of the behavior of physical systems – e.g., stability, periodicity – is decidable (i.e. Turing computable). We then examine some potential challenges to these three variants, drawn from relativity theory, quantum mechanics, and elsewhere. We conclude that all three variants are best viewed as open empirical hypotheses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Some papers from the Workshop were published in 1990, in a special volume of Iyyun. The volume also contains papers by Avishai Margalit, Charles Parsons, Warren Goldfarb, William Tait, and Mark Steiner.

References

  • Aaronson, S. (2005). Guest column: NP-complete problems and physical reality. ACM SIGACT News, 36(1), 30–52.

    Google Scholar 

  • Andréka, H., Németi, I., & Németi, P. (2009). General relativistic hypercomputing and foundation of mathematics. Natural Computing, 8, 499–516.

    Google Scholar 

  • Barrett, J. A., & Aitken, W. (2010). A note on the physical possibility of ordinal computation. The British Journal for the Philosophy of Science, 61, 867–874.

    Google Scholar 

  • Button, T. (2009). SAD computers and two versions of the Church-Turing thesis. The British Journal for the Philosophy of Science, 60, 765–792.

    Google Scholar 

  • Calude, C. S., Dinneen, M. J., Dumitrescu, M., & Svozil, K. (2010). Experimental evidence of quantum randomness incomputability. Physical Review A, 82: 022102–1-022102–8.

    Google Scholar 

  • Calude, C. S., & Svozil, K. (2008). Quantum randomness and value indefiniteness. Advanced Science Letters, 1, 165–168.

    Google Scholar 

  • Castelvecchi, D. (2015). Paradox at the heart of mathematics makes physics problem unanswerable. Nature, 528, 207.

    Google Scholar 

  • Chalmers, D. J. (2011). A computational foundation for the study of cognition. Journal of Cognitive Science, 12, 323–357.

    Google Scholar 

  • Church, A. (1936). An unsolvable problem of elementary number theory. American Journal of Mathematics, 58, 345–363.

    Google Scholar 

  • Church, A. (1940). On the concept of a random sequence. American Mathematical Society Bulletin, 46, 130–135.

    Google Scholar 

  • Copeland, B. J. (1997). The broad conception of computation. American Behavioral Scientist, 40, 690–716.

    Google Scholar 

  • Copeland, B. J. (1998). Even Turing machines can compute uncomputable functions. In C. Calude, J. Casti, & M. Dinneen (Eds.), Unconventional models of computation. New York: Springer.

    Google Scholar 

  • Copeland, B. J. (2000). Narrow versus wide mechanism. Journal of Philosophy 96, 5–32. Reprinted in M. Scheutz (Ed.) (2002). Computationalism. Cambridge, MA: MIT Press.

    Google Scholar 

  • Copeland, B. J. (2002). Hypercomputation. Minds and Machines, 12, 461–502.

    Google Scholar 

  • Copeland, B. J. (2004). Hypercomputation: Philosophical issues. Theoretical Computer Science, 317, 251–267.

    Google Scholar 

  • Copeland, B. J. (2017). The Church-Turing thesis. In E. N. Zalta (Ed.),The Stanford encyclopedia of philosophy. https://plato.stanford.edu/archives/win2017/entries/church-turing/

  • Copeland, B. J., & Shagrir, O. (2007). Physical computation: How general are Gandy’s principles for mechanisms? Minds and Machines, 17, 217–231.

    Google Scholar 

  • Copeland, B. J., & Shagrir, O. (2011). Do accelerating Turing machines compute the uncomputable? Minds and Machines, 21, 221–239.

    Google Scholar 

  • Copeland, B. J., & Shagrir, O. (2019). The Church–Turing thesis—Logical limit, or breachable barrier? Communications of the ACM, 62, 66–74.

    Google Scholar 

  • Copeland, B. J., Shagrir, O., & Sprevak, M. (2018). Zuse’s thesis, Gandy’s thesis, and Penrose’s thesis. In M. Cuffaro & S. Fletcher (Eds.), Physical perspectives on computation, computational perspectives on physics (pp. 39–59). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cubitt, T. S., Perez-Garcia, D., & Wolf, M. M. (2015). Undecidability of the spectral gap. Nature, 528(7581), 207–211.

    Google Scholar 

  • Davies, B. E. (2001). Building infinite machines. The British Journal for the Philosophy of Science, 52, 671–682.

    Google Scholar 

  • Deutsch, D. (1985). Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 400(1818), 97–117.

    Google Scholar 

  • Earman, J. (1986). A primer on determinism. Dordrecht: Reidel.

    Google Scholar 

  • Earman, J., & Norton, J. D. (1993). Forever is a day: Supertasks in Pitowsky and Malament-Hogarth spacetimes. Philosophy of Science, 60, 22–42.

    Google Scholar 

  • Eisert, J., Müller, M. P., & Gogolin, C. (2012). Quantum measurement occurrence is undecidable. Physical Review Letters, 108(26), 260501.

    Google Scholar 

  • Etesi, G., & Németi, I. (2002). Non-Turing computations via Malament-Hogarth space-times. International Journal of Theoretical Physics, 41, 341–370.

    Google Scholar 

  • Fresco, N. (2014). Physical computation and cognitive science. Berlin: Springer.

    Google Scholar 

  • Gandy, R. O. (1980). Church’s thesis and principles of mechanisms. In S. C. Kleene, J. Barwise, H. J. Keisler, & K. Kunen (Eds.), The Kleene symposium. Amsterdam: North-Holland.

    Google Scholar 

  • Geroch, R., & Hartle, J. B. (1986). Computability and physical theories. Foundations of Physics, 16, 533–550.

    Google Scholar 

  • Grzegorczyk, A. (1955). Computable functionals. Fundamenta Mathematicae, 42, 168–203.

    Google Scholar 

  • Grzegorczyk, A. (1957). On the definitions of computable real continuous functions. Fundamenta Mathematicae, 44, 61–71.

    Google Scholar 

  • Harel, D., & Feldman, Y. A. (1992). Algorithmics: The spirit of computing (3rd ed.). Harlow: Addison-Wesley.

    Google Scholar 

  • Hogarth, M. (1994). Non-Turing computers and non-Turing computability. Proceedings of the Biennial Meeting of the Philosophy of Science Association, 1, 126–138.

    Google Scholar 

  • Hogarth, M. (2004). Deciding arithmetic using SAD computers. The British Journal for the Philosophy of Science, 55, 681–691.

    Google Scholar 

  • Komar, A. (1964). Undecidability of macroscopically distinguishable states in quantum field theory. Physical Review, second series, 133B, 542–544.

    Google Scholar 

  • Kreisel, G. (1965). Mathematical logic. In T. L. Saaty (Ed.), Lectures on modern mathematics (Vol. 3). New York: Wiley.

    Google Scholar 

  • Kreisel, G. (1967). Mathematical logic: What has it done for the philosophy of mathematics? In R. Schoenman (Ed.), Bertrand Russell: Philosopher of the century. London: Allen and Unwin.

    Google Scholar 

  • Lacombe, D. (1955). Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles III. Comptes Rendus Académie des Sciences Paris, 241, 151–153.

    Google Scholar 

  • Mazur, S. (1963). Computational analysis. Warsaw: Razprawy Matematyczne.

    Google Scholar 

  • Miłkowski, M. (2013). Explaining the computational mind. Cambridge: MIT Press.

    Google Scholar 

  • Moore, C. (1990). Unpredictability and undecidability in dynamical systems. Physical Review Letters, 64, 2354–2357.

    Google Scholar 

  • Németi, I., & Dávid, G. (2006). Relativistic computers and the Turing barrier. Journal of Applied Mathematics and Computation, 178, 118–142.

    Google Scholar 

  • Penrose, R. (1989). The emperor’s new mind: Concerning computers, minds and the laws of physics. Oxford: Oxford University Press.

    Google Scholar 

  • Penrose, R. (1994). Shadows of the mind. Oxford: Oxford University Press.

    Google Scholar 

  • Piccinini, G. (2011). The physical Church-Turing thesis: Modest or bold? The British Journal for the Philosophy of Science, 62, 733–769.

    Google Scholar 

  • Piccinini, G. (2015). Physical computation: A mechanistic account. Oxford: Oxford University Press.

    Google Scholar 

  • Pitowsky, I. (1990). The physical Church thesis and physical computational complexity. Iyyun, 39, 81–99.

    Google Scholar 

  • Pitowsky, I. (1996). Laplace’s demon consults an oracle: The computational complexity of prediction. Studies in History and Philosophy of Science Part B, 27(2), 161–180.

    Google Scholar 

  • Pitowsky, I. (2002). Quantum speed-up of computations. Philosophy of Science, 69, S168–S177.

    Google Scholar 

  • Pour-El, M. B. (1974). Abstract computability and its relation to the general purpose analog computer (some connections between logic, differential equations and analog computers). Transactions of the American Mathematical Society, 199, 1–28.

    Google Scholar 

  • Pour-El, M. B., & Richards, I. J. (1981). The wave equation with computable initial data such that its unique solution is not computable. Advances in Mathematics, 39, 215–239.

    Google Scholar 

  • Pour-El, M. B., & Richards, I. J. (1989). Computability in analysis and physics. Berlin: Springer.

    Google Scholar 

  • Scarpellini, B. (1963). Zwei unentscheidbare Probleme der Analysis. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 9, 265–289. English translation in Minds and Machines 12 (2002): 461–502.

    Google Scholar 

  • Shagrir, O. (2006). Why we view the brain as a computer. Synthese, 153, 393–416.

    Google Scholar 

  • Shagrir, O., & Pitowsky, I. (2003). Physical hypercomputation and the Church–Turing thesis. Minds and Machines, 13, 87–101.

    Google Scholar 

  • Sprevak, M. (2010). Computation, individuation, and the received view on representation. Studies in History and Philosophy of Science, 41, 260–270.

    Google Scholar 

  • Turing, A. M. (1936). On computable numbers, with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society, Series, 2(42), 230–265.

    Google Scholar 

  • Turing, A. M. (1947). Lecture on the Automatic Computing Engine. In Copeland, B. J. (2004). The essential Turing: Seminal writings in computing, logic, philosophy, artificial intelligence, and artificial life, plus the secrets of Enigma. Oxford University Press.

    Google Scholar 

  • Turing, A. M. (1948). Intelligent machinery. In The essential Turing. Oxford University Press.

    Google Scholar 

  • Turing, A.M. (1950). Computing machinery and intelligence. In The essential Turing. Oxford University Press.

    Google Scholar 

  • Welch, P. D. (2008). The extent of computation in Malament-Hogarth spacetimes. The British Journal for the Philosophy of Science, 59, 659–674.

    Google Scholar 

  • Wolfram, S. (1985). Undecidability and intractability in theoretical physics. Physical Review Letters, 54, 735–738.

    Google Scholar 

Download references

Acknowledgements

An early version of this chapter was presented at the Workshop on Physics and Computation (UCNC2018) in Fontainebleau, at the International Association for Computing and Philosophy meeting (IACAP2018) in Warsaw, and at the research logic seminar in Tel Aviv University. Thanks to the audiences for helpful discussion. We are also grateful to Piccinini for his comments on a draft of this paper. Shagrir’s research was supported by the Israel Science Foundation grant 830/18.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Copeland, B.J., Shagrir, O. (2020). Physical Computability Theses. In: Hemmo, M., Shenker, O. (eds) Quantum, Probability, Logic. Jerusalem Studies in Philosophy and History of Science. Springer, Cham. https://doi.org/10.1007/978-3-030-34316-3_9

Download citation

Publish with us

Policies and ethics

Navigation