Synthesis of Magnetic Carbon Nanotubes and Their Composites

  • Living reference work entry
  • First Online:
Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites

Abstract

Carbon nanotubes (CNTs) are cylindrical nanostructured molecules composed of hexagonal arrangements of hybridized carbon atoms, which are produced by rolling up of graphene sheet(s). This fascinating family of carbon materials plays a crucial role in the rapidly growing field of nanoscience and nanotechnology owing to their astounding properties and huge potential for numerous applications. Over time, research endeavors have been devoted toward modifying CNTs with magnetic nanoparticles to broaden and/or amplify their properties and applications. Incorporation of magnetic nanoparticles in CNTs can increase the tunability of electrical, thermal, mechanical, optical, and/or magnetic properties. In this chapter, we describe diverse synthetic synthesis strategies of magnetic CNTs and their composites. In particular, the main focus will be on synthesis methods such as pyrolysis, filling, pulsed laser ablation, chemical vapor deposition, arc discharge, electrospinning, sol-gel, template-based synthesis, detonation-induced, solvothermal, sonochemical, self-assembly, co-precipitation, reverse microemulsion, and electrochemical method, although this is preceded by a brief introduction of the history, structure, classification, and properties of CNTs. Finally, the chapter will shed light on the application of magnetic CNTs and their nanocomposites in numerous areas including environmental remediation, sensor technology, catalysis, magnetic separation of biomolecules, biomedicine, and electrochemical energy conversion and storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Ajayan P, Ebbesen T (1997) Nanometre-size tubes of carbon. Rep Prog Phys 60(10):1025

    Article  CAS  Google Scholar 

  • Arora N, Sharma N (2014) Arc discharge synthesis of carbon nanotubes: Comprehensive review. Diam Relat Mater 50:135–150

    Article  CAS  Google Scholar 

  • Blachowicz T, Ehrmann A (2020) Most recent developments in electrospun magnetic nanofibers: A review. J Eng Fibers Fabrics 15:1558925019900843

    Google Scholar 

  • Cao H, Zhu M, Li Y, Liu J, Ni Z, Qin Z (2007) A highly coercive carbon nanotube coated with Ni0. 5Zn0. 5Fe2O4 nanocrystals synthesized by chemical precipitation–hydrothermal process. J Solid State Chem 180(11):3218–3223

    Article  CAS  Google Scholar 

  • Chen W, Fan Z, Pan X, Bao X (2008) Effect of confinement in carbon nanotubes on the activity of Fischer− Tropsch iron catalyst. J Am Chem Soc 130(29):9414–9419

    Article  CAS  Google Scholar 

  • Chen C, Hu J, Shao D, Li J, Wang X (2009) Adsorption behavior of multiwall carbon nanotube/iron oxide magnetic composites for Ni (II) and Sr (II). J Hazard Mater 164(2–3):923–928

    Article  CAS  Google Scholar 

  • Cheng Y, Liu Y, Huang J, Li K, **an Y, Zhang W, ** L (2009) Amperometric tyrosinase biosensor based on Fe3O4 nanoparticles-coated carbon nanotubes nanocomposite for rapid detection of coliforms. Electrochim Acta 54(9):2588–2594

    Article  CAS  Google Scholar 

  • Diao X, Chen H, Zhang G, Zhang F, Fan X (2012) Magnetic carbon nanotubes for protein separation. J Nanomater 2012

    Google Scholar 

  • Dresselhaus M, Dresselhaus G, Jorio A (2004) Unusual properties and structure of carbon nanotubes. Annu Rev Mater Res 34:247–278

    Article  CAS  Google Scholar 

  • Du L, Xu C, Liu J, Lan Y, Chen P (2017) One-step detonation-assisted synthesis of Fe 3 O 4-Fe@ BCNT composite towards high performance lithium-ion batteries. Nanoscale 9(38):14376–14384

    Article  CAS  Google Scholar 

  • Elliott JA, Sandler JK, Windle AH, Young RJ, Shaffer MS (2004) Collapse of single-wall carbon nanotubes is diameter dependent. Phys Rev Lett 92(9):095501

    Article  CAS  Google Scholar 

  • El-Shishtawy RM, Salam MA, Gabal M, Asiri AM (2012) Preparation, characterization and electromagnetic properties of polyaniline/carbon nanotubes/nickel ferrite nanocomposites. Polym Compos 33(4):532–539

    Article  CAS  Google Scholar 

  • Ensafi AA, Allafchian AR, Rezaei B, Mohammadzadeh R (2013) Characterization of carbon nanotubes decorated with NiFe2O4 magnetic nanoparticles as a novel electrochemical sensor: Application for highly selective determination of sotalol using voltammetry. Mater Sci Eng C 33(1):202–208

    Article  CAS  Google Scholar 

  • Farghali AA, Bahgat M, ElRouby WM, Khedr MH (2013) Decoration of multi-walled carbon nanotubes (MWCNTs) with different ferrite nanoparticles and its use as an adsorbent. J Nanostruct Chem 3(1):50

    Article  Google Scholar 

  • Fatimah I, Fadillah G, Yudha SP (2021) Synthesis of iron-based magnetic nanocomposites: a review. Arab J Chem 14:103301

    Article  CAS  Google Scholar 

  • Gao C, Li W, Morimoto H, Nagaoka Y, Maekawa T (2006) Magnetic carbon nanotubes: synthesis by electrostatic self-assembly approach and application in biomanipulations. J Phys Chem B 110(14):7213–7220

    Article  CAS  Google Scholar 

  • Gedanken A (2004) Using sonochemistry for the fabrication of nanomaterials. Ultrason Sonochem 11(2):47–55

    Article  CAS  Google Scholar 

  • Gu D, Li W, Wang F, Bongard H, Spliethoff B, Schmidt W, Weidenthaler C, **a Y, Zhao D, Schüth F (2015) Controllable synthesis of mesoporous peapod-like Co3O4@ carbon nanotube arrays for high-performance lithium-ion batteries. Angew Chem 127(24):7166–7170

    Google Scholar 

  • Gul H, Lu W, Xu P, **ng J, Chen J (2010) Magnetic carbon nanotube labelling for haematopoietic stem/progenitor cell tracking. Nanotechnology 21(15):155101

    Article  CAS  Google Scholar 

  • Han M, Zhang W, Gao C, Liang Y, Xu Z, Zhu J, He J (2006) Hollow nickel microspheres covered with oriented carbon nanotubes and its magnetic property. Carbon 44(2):211–215

    Article  CAS  Google Scholar 

  • Hao Z, Liu Q, Wang J (2010) Coating carbon nanotubes with ferrites using an improved co-precipitation method. J Compos Mater 44(3):389–395

    Article  CAS  Google Scholar 

  • Huang H, Liu X, Zhang X, Liu W, Su X, Zhang Z (2010) Fabrication of new magnetic nanoparticles (Fe3O4) grafted multiwall carbon nanotubes and heterocyclic compound modified electrode for electrochemical sensor. Electroanal Int J Devot Fundament Prac Aspects Electroanal 22(4):433–438

    CAS  Google Scholar 

  • Iijima S, Ichihashi T (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430):603–605

    Article  CAS  Google Scholar 

  • Jang J, Yoon H (2003) Fabrication of magnetic carbon nanotubes using a metal-impregnated polymer precursor. Adv Mater 15(24):2088–2091

    Article  CAS  Google Scholar 

  • ** X, Ni QQ, Fu Y, Zhang L, Natsuki T (2012) Electrospun nanocomposite polyacrylonitrile fibers containing carbon nanotubes and cobalt ferrite. Polym Compos 33(3):317–323

    Article  CAS  Google Scholar 

  • **á Lee K (2005) Fabrication of polyimide nanotubes and carbon nanotubes containing magnetic iron oxide in confinement. Chem Commun (30):3847–3849

    Google Scholar 

  • Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R (2014) Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym Sci 292(9):2025–2052

    Article  CAS  Google Scholar 

  • Khashan KS, Sulaiman GM, Mahdi R (2018) The effect of laser energy on the properties of carbon nanotube—iron oxide nanoparticles composite prepared via pulsed laser ablation in liquid. Mater Res Express 5(10):105004

    Article  CAS  Google Scholar 

  • Kim IT, Nunnery GA, Jacob K, Schwartz J, Liu X, Tannenbaum R (2010) Synthesis, characterization, and alignment of magnetic carbon nanotubes tethered with maghemite nanoparticles. J Phys Chem C 114(15):6944–6951

    Article  CAS  Google Scholar 

  • Korneva G, Ye H, Gogotsi Y, Halverson D, Friedman G, Bradley J-C, Kornev KG (2005) Carbon nanotubes loaded with magnetic particles. Nano Lett 5(5):879–884

    Article  CAS  Google Scholar 

  • Kumar N, Kumar A, Huang G-M, Wu W-W, Tseng TY (2018) Facile synthesis of mesoporous NiFe2O4/CNTs nanocomposite cathode material for high performance asymmetric pseudocapacitors. Appl Surf Sci 433:1100–1112

    Article  CAS  Google Scholar 

  • Li J, Yuan R, Chai Y, Che X (2010) Fabrication of a novel glucose biosensor based on Pt nanoparticles-decorated iron oxide-multiwall carbon nanotubes magnetic composite. J Mol Catal B Enzym 66(1–2):8–14

    Article  CAS  Google Scholar 

  • Liu Y, Gao L (2005) A study of the electrical properties of carbon nanotube-NiFe2O4 composites: effect of the surface treatment of the carbon nanotubes. Carbon 43(1):47–52

    Article  CAS  Google Scholar 

  • Liu Q, Chen Z-G, Liu B, Ren W, Li F, Cong H, Cheng H-M (2008) Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures. Carbon 46(14):1892–1902

    Article  CAS  Google Scholar 

  • Liu J, Qiao SZ, Hu QH, Lu GQ (2011) Magnetic nanocomposites with mesoporous structures: synthesis and applications. Small 7(4):425–443

    Article  CAS  Google Scholar 

  • Liu F, Zhang X, Zhang X, Wang L, Liu M, Zhang J (2020a) Dual-template strategy for electrocatalyst of cobalt nanoparticles encapsulated in nitrogen-doped carbon nanotubes for oxygen reduction reaction. J Colloid Interface Sci 581:523–532

    Article  CAS  Google Scholar 

  • Liu F, Zhang X, Zhang X, Liu M, Shao Q, Dong L, Yan W, Zhang J (2020b) Novel Fe3C nanoparticles encapsulated in bamboo-like nitrogen-doped carbon nanotubes as high-performance electrocatalyst for zinc-air battery. J Electrochem Soc 167(6):060526

    Article  CAS  Google Scholar 

  • Lu W, Li J, Sheng Y, Zhang X, You J, Chen L (2017) One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr (VI) from aqueous solution. J Colloid Interface Sci 505:1134–1146

    Article  CAS  Google Scholar 

  • Meng Z, Liu B, Zheng J, Sheng Q, Zhang H (2011) Electrodeposition of cobalt oxide nanoparticles on carbon nanotubes, and their electrocatalytic properties for nitrite electrooxidation. Microchim Acta 175(3–4):251–257

    Article  CAS  Google Scholar 

  • O’connell MJ (2006) Carbon nanotubes: properties and applications. CRC Press

    Book  Google Scholar 

  • Odom TW, Huang J-L, Kim P, Lieber CM (1998) Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 391(6662):62–64

    Article  CAS  Google Scholar 

  • Owonubi SJ, Malima NM, Revaprasadu N (2020) Metal oxide–based nanocomposites as antimicrobial and biomedical agents. In: Antibiotic materials in healthcare. Elsevier, pp 287–323

    Chapter  Google Scholar 

  • Peng X, Luan Z, Di Z, Zhang Z, Zhu C (2005) Carbon nanotubes-iron oxides magnetic composites as adsorbent for removal of Pb (II) and Cu (II) from water. Carbon 43(4):880–883

    Article  CAS  Google Scholar 

  • Pérez-López B, Merkoçi A (2011) Magnetic nanoparticles modified with carbon nanotubes for electrocatalytic magnetoswitchable biosensing applications. Adv Funct Mater 21(2):255–260

    Article  CAS  Google Scholar 

  • Qu S, Wang J, Kong J, Yang P, Chen G (2007) Magnetic loading of carbon nanotube/nano-Fe3O4 composite for electrochemical sensing. Talanta 71(3):1096–1102

    Article  CAS  Google Scholar 

  • Rakhi R (2019) Preparation and properties of manipulated carbon nanotube composites and applications. In: Nanocarbon and its composites. Elsevier, pp 489–520

    Chapter  Google Scholar 

  • Reddy B (2011) Advances in nanocomposites: synthesis, characterization and industrial applications. BoD–Books on Demand

    Book  Google Scholar 

  • Salehabadi A, Salavati-Niasari M, Ghiyasiyan-Arani M (2018) Self-assembly of hydrogen storage materials based multi-walled carbon nanotubes (MWCNTs) and Dy3Fe5O12 (DFO) nanoparticles. J Alloys Compd 745:789–797

    Article  CAS  Google Scholar 

  • Salimi A, Pourbahram B, Mansouri-Majd S, Hallaj R (2015) Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection. Electrochim Acta 156:207–215

    Article  CAS  Google Scholar 

  • Sengupta J, Jana A, Singh NP, Mitra C, Jacob C (2010) Site-selective synthesis of in situ Ni-filled multi-walled carbon nanotubes using Ni (salen) as a catalyst source. Nanotechnology 21(41):415605

    Article  CAS  Google Scholar 

  • Shan Y, Chen K, Yu X, Gao L (2010) Preparation and characterization of biocompatible magnetic carbon nanotubes. Appl Surf Sci 257(2):362–366

    Article  CAS  Google Scholar 

  • Shen J, Qin C, Hu Y, Li N, Ye M (2010) Facile synthesis of magnetic nanoparticle–coated single-walled carbon nanotubes and its functional modification in epoxy resin. Polym Compos 31(12):2035–2041

    Article  CAS  Google Scholar 

  • Shi C, Owusu KA, Xu X, Zhu T, Zhang G, Yang W, Mai L (2019) 1D Carbon‐based nanocomposites for electrochemical energy storage. Small 15(48):1902348

    Article  CAS  Google Scholar 

  • Singh B, Saket D, Singh A, Pati S, Gupta T, Singh V, Dhakate S, Dhawan S, Kotnala R, Mathur R (2015) Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes. J Mater Chem A 3(25):13203–13209

    Article  CAS  Google Scholar 

  • Sowichai K, Supothina S, Nimittrakoolchai O-U, Seto T, Otani Y, Charinpanitkul T (2012) Facile method to prepare magnetic multi-walled carbon nanotubes by in situ co-precipitation route. J Ind Eng Chem 18(5):1568–1571

    Article  CAS  Google Scholar 

  • Sun Z, Liu Z, Wang Y, Han B, Du J, Zhang J (2005) Fabrication and characterization of magnetic carbon nanotube composites. J Mater Chem 15(42):4497–4501

    Article  CAS  Google Scholar 

  • Sutradhar S, Das S, Chakrabarti P (2013) Magnetic and enhanced microwave absorption properties of nanoparticles of Li0. 32Zn0. 26Cu0. 1Fe2. 32O4 encapsulated in carbon nanotubes. Mater Lett 95:145–148

    Article  CAS  Google Scholar 

  • Tamburri E, Toschi F, Guglielmotti V, Scatena E, Orlanducci S, Terranova ML (2009) Nanofabrication by electrochemical routes of Ni-coated ordered arrays of carbon nanotubes. J Nanopart Res 11(6):1311–1319

    Article  CAS  Google Scholar 

  • Varshney K (2014) Carbon nanotubes: a review on synthesis, properties and applications. Int J Eng Res Gen Sci 2(4):660–677

    Google Scholar 

  • Wang J, Dong Z, Huang J, Li J, ** X, Niu J, Sun J, ** J, Ma J (2013) Filling carbon nanotubes with Ni–Fe alloys via methylbenzene-oriented constant current electrodeposition for hydrazine electrocatalysis. Appl Surf Sci 270:128–132

    Article  CAS  Google Scholar 

  • Wang Z, Ang J, Zhang B, Zhang Y, Ma XYD, Yan T, Liu J, Che B, Huang Y, Lu X (2019) FeCo/FeCoNi/N-doped carbon nanotubes grafted polyhedron-derived hybrid fibers as bifunctional oxygen electrocatalysts for durable rechargeable zinc–air battery. Appl Catal B Environ 254:26–36

    Article  CAS  Google Scholar 

  • Wei D, Liu Y, Cao L, Fu L, Li X, Wang Y, Yu G (2007) A magnetism-assisted chemical vapor deposition method to produce branched or iron-encapsulated carbon nanotubes. J Am Chem Soc 129(23):7364–7368

    Article  CAS  Google Scholar 

  • Whitesides GM, Kriebel JK, Love JC (2005) Molecular engineering of surfaces using self-assembled monolayers. Sci Prog 88(1):17–48

    Article  Google Scholar 

  • Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2(2):182–193

    Article  CAS  Google Scholar 

  • Wu H, Liu G, Wang X, Zhang J, Chen Y, Shi J, Yang H, Hu H, Yang S (2011) Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater 7(9):3496–3504

    Article  CAS  Google Scholar 

  • **a W, Chen X, Kundu S, Wang X, Grundmeier G, Wang Y, Bron M, Schuhmann W, Muhler M (2007) Chemical vapor synthesis of secondary carbon nanotubes catalyzed by iron nanoparticles electrodeposited on primary carbon nanotubes. Surf Coat Technol 201(22–23):9232–9237

    Article  CAS  Google Scholar 

  • **ang R, Luo G, Qian W, Zhang Q, Wang Y, Wei F, Li Q, Cao A (2007) Encapsulation, compensation, and substitution of catalyst particles during continuous growth of carbon nanotubes. Adv Mater 19(17):2360–2363

    Article  CAS  Google Scholar 

  • **ao S, Shen M, Guo R, Huang Q, Wang S, Shi X (2010) Fabrication of multiwalled carbon nanotube-reinforced electrospun polymer nanofibers containing zero-valent iron nanoparticles for environmental applications. J Mater Chem 20(27):5700–5708

    Article  CAS  Google Scholar 

  • Xu P, Han X, Liu X, Zhang B, Wang C, Wang X (2009) A study of the magnetic and electromagnetic properties of γ-Fe2O3–multiwalled carbon nanotubes (MWCNT) and Fe/Fe3C–MWCNT composites. Mater Chem Phys 114(2–3):556–560

    Article  CAS  Google Scholar 

  • Xu N, Wang Y-D, Zhou X-D, Qiao J (2018) In Ni-Fe oxide quantum dots anchored on carbon nanotubes as a catalysts for oxygen reduction/evolution reactions for metal-air batteries. ECS meeting abstracts. IOP Publishing, p 1668

    Google Scholar 

  • Xue H, Jiao Q, Hao L, Ni X, Wang Y, Li H, Wu Q, Zhao Y (2017) Preparation of core-shell Zn-doped CoFe2O4 cubes@ CNT composites and their absorbing performances. Micro Nano Lett 12(4):227–230

    Article  CAS  Google Scholar 

  • Yáñez-Sedeño P, Campuzano S, **arrón JM (2017) Electrochemical sensors based on magnetic molecularly imprinted polymers: a review. Anal Chim Acta 960:1–17

    Article  CAS  Google Scholar 

  • Yang D, Yang F, Hu J, Long J, Wang C, Fu D, Ni Q (2009) Hydrophilic multi-walled carbon nanotubes decorated with magnetite nanoparticles as lymphatic targeted drug delivery vehicles. Chem Commun 7(29):4447–4449

    Article  CAS  Google Scholar 

  • Yang Z-F, Li L-Y, Hsieh C-T, Juang R-S (2018) Co-precipitation of magnetic Fe3O4 nanoparticles onto carbon nanotubes for removal of copper ions from aqueous solution. J Taiwan Inst Chem Eng 82:56–63

    Article  CAS  Google Scholar 

  • Yu M-F, Files BS, Arepalli S, Ruoff RS (2000) Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys Rev Lett 84(24):5552

    Article  CAS  Google Scholar 

  • Yu R, Jiang C, Chu W, Zhao J, Sun W, Ran M (2017) Sonochemical synthesis of magnetic properties of Fe3O4/CNT nanocomposites. Integr Ferroelectr 179(1):77–83

    Article  CAS  Google Scholar 

  • Yu X, Chen G, Wang Y, Liu J, Pei K, Zhao Y, You W, Wang L, Zhang J, **ng L (2020) Hierarchical coupling effect in hollow Ni/NiFe 2 O 4-CNTs microsphere via spray-drying for enhanced oxygen evolution electrocatalysis. Nano Res 13(2):437–446

    Article  CAS  Google Scholar 

  • Yue L, Zhang S, Zhao H, Feng Y, Wang M, An L, Zhang X, Mi J (2019) One-pot synthesis CoFe2O4/CNTs composite for asymmetric supercapacitor electrode. Solid State Ionics 329:15–24

    Article  CAS  Google Scholar 

  • Zhang L, Ni Q-Q, Natsuki T, Fu Y (2009) Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties. Appl Surf Sci 255(20):8676–8681

    Article  CAS  Google Scholar 

  • Zhu M, Diao G (2011) Review on the progress in synthesis and application of magnetic carbon nanocomposites. Nanoscale 3(7):2748–2767

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial assistance of the University of Zululand and the National Research Foundation, South Africa, through the South African Research Chairs Initiative (SARChI) is hereby acknowledged. NMM, SJO, and GBS thank the National Research Foundation (NRF) for funding under the South African Research Chair for Nanotechnology.

Author information

Authors and Affiliations

Authors

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Malima, N.M., Owonubi, S.J., Shombe, G.B., Revaprasadu, N. (2022). Synthesis of Magnetic Carbon Nanotubes and Their Composites. In: Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-34007-0_11-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34007-0_11-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34007-0

  • Online ISBN: 978-3-030-34007-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation