Toxic Effects of Metal Nanoparticles in Marine Invertebrates

  • Chapter
  • First Online:
Nanostructured Materials for Treating Aquatic Pollution

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 456 Accesses

Abstract

The extensive use of nanomaterials, namely metal and metal oxide nanoparticles (NPs), in a variety of application areas—such as electronics, medicine, energy, environment, industry, information, security, among others—leads to the end-up of these materials into the aquatic environments. Once there, NPs accumulate in organisms and may amplify along the food chain, inducing effects on these organisms and humans. Due to the relevance of this issue, works concerning NPs potential effects to the aquatic organisms have been published in the literature. This chapter starts to explore the main applications and the synthesis methods of NPs, as well as their impact in the environment. Then, common parameters used to evaluate ecotoxicological impacts are described. Lastly, research undertaken on the biological toxic impacts of titanium dioxide, zinc oxide and silver NPs in marine invertebrates is reviewed, based on the most recent literature. The selection of these NPs was based on the evaluation of nanomaterials most used in consumer products.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mobasser, S., Firoozi, A.: Review of nanotechnology applications in science and engineering. J. Civ. Eng. Urban. 6, 84–93 (2016)

    Google Scholar 

  2. Blackman, J.: Metallic Nanoparticles. Elsevier Science (2008)

    Google Scholar 

  3. Canesi, L., Corsi, I.: Effects of nanomaterials on marine invertebrates. Sci. Total Environ. 565, 933–940 (2015)

    Article  CAS  Google Scholar 

  4. Birben, E., Sahiner, U.M., Sackesen, C., Erzurum, S., Kalayci, O.: Oxidative stress and antioxidant defense. World Allergy Organ. J. 5, 9–19 (2012)

    Article  CAS  Google Scholar 

  5. Francisquini, E., Schoenmaker, J., Souza, J.A.: Nanopartículas Magnéticas e suas Aplicações. In: Química Supramol. e Nanotecnologia, 1st edn, pp. 269–288 (2014)

    Google Scholar 

  6. Martins, M.A., Trindade, T.: Os nanomateriais e a descoberta de novos mundos na bancada do químico. Quim. Nova 35, 1434–1446 (2012)

    Article  CAS  Google Scholar 

  7. ISO, International Organization for Standardization (2012). https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-2:ed-1:v1:en. Accessed 16 Jun 2016

  8. Quina, F.H.: Nanotecnologia e o Meio Ambiente: Perspectivas e Riscos. Quim. Nova 27, 1028–1029 (2004)

    Article  CAS  Google Scholar 

  9. Vance, M.E., Kuiken, T., Vejerano, E.P., McGinnis, S.P., Hochella, M.F., Rejeski, D., Hull, M.S.: Nanotechnology in the real world: redevelo** the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6, 1769–1780 (2015)

    Article  CAS  Google Scholar 

  10. Lu, P.J., Huang, S.C., Chen, Y.P., Chiueh, L.C., Shih, D.Y.C.: Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics. J. Food Drug Anal. 23, 587–594 (2015)

    Article  CAS  Google Scholar 

  11. Katz, L.M., Dewan, K., Bronaugh, R.L.: Nanotechnology in cosmetics. Food Chem. Toxicol. 85, 127–137 (2015)

    Article  CAS  Google Scholar 

  12. Anu Mary Ealia, S., Saravanakumar, M.P.: A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 263, 1–15 (2017). https://doi.org/10.1088/1757-899x/263/3/032019

    Article  Google Scholar 

  13. Corma, A., Garcia, H.: Supported gold nanoparticles as catalysts for organic reactions. Chem. Soc. Rev. 37, 2096–2126 (2008)

    Article  CAS  Google Scholar 

  14. Mishra, P., Singh, L., Islam, M.A., Nasrullah, M., Sakinah, A.M.M., Wahid, Z.A.: NiO and CoO nanoparticles mediated biological hydrogen production: effect of Ni/Co oxide NPs-ratio. Bioresour. Technol. Rep. 5, 364–368 (2018)

    Article  Google Scholar 

  15. Patra, J.K., Das, G., Fraceto, L.F., Campos, E.V.R., Rodriguez-Torres, M.D.P., Acosta-Torres, L.S., Diaz-Torres, L.A., Grillo, R., Swamy, M.K., Sharma, S., Habtemariam, S., Shin, H.S.: Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 1–33 (2018)

    Article  CAS  Google Scholar 

  16. Tan, H.-L., Teow, S.-Y., Pushpamalar, J.: Application of metal nanoparticle-hydrogel composites in tissue regeneration. Bioengineering 6, 17 (2019)

    Article  Google Scholar 

  17. Bouwmeester, H., Dekkers, S., Noordam, M.Y., Hagens, W.I., Bulder, A.S., de Heer, C., ten Voorde, S.E.C.G., Wijnhoven, S.W.P., Marvin, H.J.P., Sips, A.J.A.M.: Review of health safety aspects of nanotechnologies in food production. Regul. Toxicol. Pharmacol. 53, 52–62 (2009)

    Article  CAS  Google Scholar 

  18. Hlongwane, G.N., Sekoai, P.T., Meyyappan, M., Moothi, K.: Simultaneous removal of pollutants from water using nanoparticles: a shift from single pollutant control to multiple pollutant control. Sci. Total Environ. 656, 808–833 (2019)

    Article  CAS  Google Scholar 

  19. Li, Q., Chen, X., Zhuang, J., Chen, X.: Decontaminating soil organic pollutants with manufactured nanoparticles. Environ. Sci. Pollut. Res. 23, 11533–11548 (2016)

    Article  CAS  Google Scholar 

  20. Sinha, A.K., Suzuki, K., Takahara, M., Azuma, H., Nonaka, T., Fukumoto, K.: Mesostructured manganese oxide/gold nanoparticle composites for extensive air purification. Angew. Chem. Int. Ed. 119, 2949–2952 (2007)

    Article  Google Scholar 

  21. Harish, K.K., Nagasamy, V., Himangshu, B., Anuttam, K.: Metallic nanoparticle: a review. Biomed. J. Sci. Tech. Res. 4, 3765–3775 (2018)

    Google Scholar 

  22. Natsuki, J., Natsuki, T., Hashimoto, Y.: A review of silver nanoparticles: synthesis methods, properties and applications. Int. J. Mater. Sci. Appl. 4, 325–332 (2016)

    Google Scholar 

  23. Smita, S., Gupta, S.K., Bartonova, A., Dusinska, M., Gutleb, A.C., Rahman, Q.: Nanoparticles in the environment: assessment using the causal diagram approach. Environ. Heal. 11, 11 (2012)

    Article  Google Scholar 

  24. Khan, H.A., Shanker, R.: Toxicity of nanomaterials. Biomed. Res. Int. 2015, 2 (2015)

    Google Scholar 

  25. Bundschuh, M., Filser, J., Lüderwald, S., McKee, M.S., Metreveli, G., Schaumann, G.E., Schulz, R., Wagner, S.: Nanoparticles in the environment: where do we come from, where do we go to? Environ. Sci. Eur. 30, 6–22 (2018)

    Article  CAS  Google Scholar 

  26. Sun, T.Y., Bornhöft, N.A., Hungerbühler, K., Nowack, B.: Dynamic probabilistic modeling of environmental emissions of engineered nanomaterials. Environ. Sci. Technol. 50, 4701–4711 (2016)

    Article  CAS  Google Scholar 

  27. Keller, A.A., McFerran, S., Lazareva, A., Suh, S.: Global life cycle releases of engineered nanomaterials. J. Nanoparticle Res. 15, 1692–1708 (2013)

    Article  Google Scholar 

  28. Châtel, A., Mouneyrac, C.: Signaling pathways involved in metal-based nanomaterial toxicity towards aquatic organisms. Comp. Biochem. Physiol. Part C. 196, 61–70 (2017)

    Google Scholar 

  29. AshaRani, P.V., Mun, G.L.K., Hande, M.P., Valiyaveettil, S.: Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3, 279–290 (2009)

    Article  CAS  Google Scholar 

  30. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry. Springer, Berlin, Heidelberg (2001)

    Book  Google Scholar 

  31. Pinto, J., Costa, M., Leite, C., Borges, C., Coppola, F., Henriques, B., Monteiro, R., Russo, T., Di Cosmo, A., Soares, A.M.V.M., Polese, G., Pereira, E., Freitas, R.: Ecotoxicological effects of lanthanum in Mytilus galloprovincialis: biochemical and histopathological impacts. Aquat. Toxicol. 211, 181–192 (2019)

    Article  CAS  Google Scholar 

  32. Coppola, F., Almeida, Â., Henriques, B., Soares, A.M.V.M., Figueira, E., Pereira, E., Freitas, R.: Biochemical impacts of Hg in Mytilus galloprovincialis under present and predicted warming scenarios. Sci. Total Environ. 601–602, 1129–1138 (2017)

    Article  CAS  Google Scholar 

  33. Monteiro, R., Costa, S., Coppola, F., Freitas, R., Vale, C., Pereira, E.: Evidences of metabolic alterations and cellular damage in mussels after short pulses of Ti contamination. Sci. Total Environ. 650, 987–995 (2019)

    Article  CAS  Google Scholar 

  34. Freitas, R., de Marchi, L., Moreira, A., Pestana, J.L.T., Wrona, F.J., Figueira, E., Soares, A.M.V.M.: Physiological and biochemical impacts induced by mercury pollution and seawater acidification in Hediste diversicolor. Sci. Total Environ. 595, 691–701 (2017)

    Article  CAS  Google Scholar 

  35. Matozzo, V., Ballarin, L., Pampanin, D.M., Marin, M.G.: Effects of copper and cadmium exposure on functional responses of hemocytes in the clam, Tapes philippinarum. Arch. Environ. Contam. Toxicol. 41, 163–170 (2001)

    Article  CAS  Google Scholar 

  36. Bouallegui, Y., Ben Younes, R., Oueslati, R., Sheehan, D.: Role of endocytotic uptake routes in impacting the ROS-related toxicity of silver nanoparticles to Mytilus galloprovincialis: a redox proteomic investigation. Aquat. Toxicol. 200, 21–27 (2018)

    Article  CAS  Google Scholar 

  37. Li, J., Schiavo, S., **angli, D., Rametta, G., Miglietta, M.L., Oliviero, M., Changwen, W., Manzo, S.: Early ecotoxic effects of ZnO nanoparticle chronic exposure in Mytilus galloprovincialis revealed by transcription of apoptosis and antioxidant-related genes. Ecotoxicology 27, 369–384 (2018)

    Article  CAS  Google Scholar 

  38. De Marchi, L., Neto, V., Pretti, C., Figueira, E., Chiellini, F., Morelli, A., Soares, A.M.V.M., Freitas, R.: Toxic effects of multi-walled carbon nanotubes on bivalves: comparison between functionalized and nonfunctionalized nanoparticles. Sci. Total Environ. 622–623, 1532–1542 (2018)

    Article  CAS  Google Scholar 

  39. Lionetto, M.G., Caricato, R., Calisi, A., Giordano, M.E., Schettino, T.: Acetylcholinesterase as a biomarker in environmental and occupational medicine: new insights and future perspectives. Biomed. Res. Int. 2013, 1–8 (2013)

    Article  CAS  Google Scholar 

  40. De Marchi, L., Neto, V., Pretti, C., Figueira, E., Chiellini, F., Soares, A.M.V.M., Freitas, R.: The impacts of emergent pollutants on Ruditapes philippinarum: biochemical responses to carbon nanoparticles exposure. Aquat. Toxicol. 187, 38–47 (2017)

    Article  CAS  Google Scholar 

  41. Nunes, B., Nunes, J., Soares, A.M.V.M., Figueira, E., Freitas, R.: Toxicological effects of paracetamol on the clam Ruditapes philippinarum: exposure vs recovery. Aquat. Toxicol. 192, 198–206 (2017)

    Article  CAS  Google Scholar 

  42. **a, B., Zhu, L., Han, Q., Sun, X., Chen, B., Qu, K.: Effects of TiO2 nanoparticles at predicted environmental relevant concentration on the marine scallop Chlamys farreri: an integrated biomarker approach. Environ. Toxicol. Pharmacol. 50, 128–135 (2017)

    Article  CAS  Google Scholar 

  43. Bouallegui, Y., Ben Younes, R., Turki, F., Oueslati, R.: Impact of exposure time, particle size and uptake pathway on silver nanoparticle effects on circulating immune cells in Mytilus galloprovincialis. J. Immunotoxicol. 14, 116–124 (2017)

    Article  CAS  Google Scholar 

  44. Auguste, M., Ciacci, C., Balbi, T., Brunelli, A., Caratto, V., Marcomini, A., Cuppini, R., Canesi, L.: Effects of nanosilver on Mytilus galloprovincialis hemocytes and early embryo development. Aquat. Toxicol. 203, 107–116 (2018)

    Article  CAS  Google Scholar 

  45. Matozzo, V., Gagné, F., Immunotoxicology approaches in ecotoxicology: lessons from mollusks. In: Lessons Immunity. From Single-Cell Organisms to Mammals, pp. 29–51. Elsevier Inc. (2016)

    Google Scholar 

  46. Moreira, A., Figueira, E., Libralato, G., Soares, A.M.V.M., Guida, M., Freitas, R.: Comparative sensitivity of Crassostrea angulata and Crassostrea gigas embryo-larval development to As under varying salinity and temperature. Mar. Environ. Res. 140, 135–144 (2018)

    Article  CAS  Google Scholar 

  47. Mos, B., Kaposi, K.L., Rose, A.L., Kelaher, B., Dworjanyn, S.A.: Moderate ocean warming mitigates, but more extreme warming exacerbates the impacts of zinc from engineered nanoparticles on a marine larva. Environ. Pollut. 228, 190–200 (2017)

    Article  CAS  Google Scholar 

  48. Oliviero, M., Schiavo, S., Dumontet, S., Manzo, S.: DNA damages and offspring quality in sea urchin Paracentrotus lividus sperms exposed to ZnO nanoparticles. Sci. Total Environ. 651, 756–765 (2019)

    Article  CAS  Google Scholar 

  49. Fabbri, R., Montagna, M., Balbi, T., Raffo, E., Palumbo, F., Canesi, L.: Adaptation of the bivalve embryotoxicity assay for the high throughput screening of emerging contaminants in Mytilus galloprovincialis. Mar. Environ. Res. 99, 1–8 (2014). https://doi.org/10.1016/j.marenvres.2014.05.007

    Article  CAS  Google Scholar 

  50. Carrazco-Quevedo, A., Römer, I., Salamanca, M.J., Poynter, A., Lynch, I., Valsami-Jones, E.: Bioaccumulation and toxic effects of nanoparticulate and ionic silver in Saccostrea glomerata (rock oyster). Ecotoxicol. Environ. Saf. 179, 127–134 (2019)

    Article  CAS  Google Scholar 

  51. Minetto, D., Libralato, G., Marcomini, A., Volpi Ghirardini, A.: Potential effects of TiO2 nanoparticles and TiCl4 in saltwater to Phaeodactylum tricornutum and Artemia franciscana. Sci. Total Environ. 579, 1379–1386 (2017)

    Article  CAS  Google Scholar 

  52. Duroudier, N., Katsumiti, A., Mikolaczyk, M., Schäfer, J., Bilbao, E., Cajaraville, M.P.: Dietary exposure of mussels to PVP/PEI coated Ag nanoparticles causes Ag accumulation in adults and abnormal embryo development in their offspring. Sci. Total Environ. 655, 48–60 (2019)

    Article  CAS  Google Scholar 

  53. Bhuvaneshwari, M., Thiagarajan, V., Nemade, P., Chandrasekaran, N., Mukherjee, A.: Toxicity and trophic transfer of P25 TiO2 NPs from Dunaliella salina to Artemia salina: effect of dietary and waterborne exposure. Environ. Res. 160, 39–46 (2018)

    Article  CAS  Google Scholar 

  54. Sellami, B., Mezni, A., Khazri, A., Bouzidi, I., Saidani, W., Sheehan, D., Beyrem, H.: Toxicity assessment of ZnO-decorated Au nanoparticles in the Mediterranean clam Ruditapes decussatus. Aquat. Toxicol. 188, 10–19 (2017)

    Article  CAS  Google Scholar 

  55. Duroudier, N., Cardoso, C., Mehennaoui, K., Mikolaczyk, M., Schäfer, J., Gutleb, A.C., Giamberini, L., Bebianno, M.J., Bilbao, E., Cajaraville, M.P.: Changes in protein expression in mussels Mytilus galloprovincialis dietarily exposed to PVP/PEI coated silver nanoparticles at different seasons. Aquat. Toxicol. 210, 56–68 (2019)

    Article  CAS  Google Scholar 

  56. Doyle, J.J., Ward, J.E., Wikfors, G.H.: Acute exposure to TiO2 nanoparticles produces minimal apparent effects on oyster, Crassostrea virginica (Gmelin), hemocytes. Mar. Pollut. Bull. 127, 512–523 (2018)

    Article  CAS  Google Scholar 

  57. Saidani, W., Sellami, B., Khazri, A., Mezni, A., Dellali, M., Joubert, O., Sheehan, D., Beyrem, H.: Metal accumulation, biochemical and behavioral responses on the Mediterranean clams Ruditapes decussatus exposed to two photocatalyst nanocomposites (TiO2 NPs and AuTiO2 NPs). Aquat. Toxicol. 208, 71–79 (2019)

    Article  CAS  Google Scholar 

  58. Auguste, M., Lasa, A., Pallavicini, A., Gualdi, S., Vezzulli, L., Canesi, L.: Exposure to TiO2 nanoparticles induces shifts in the microbiota composition of Mytilus galloprovincialis hemolymph. Sci. Total Environ. 670, 129–137 (2019)

    Article  CAS  Google Scholar 

  59. Shi, W., Guan, X., Han, Y., Zha, S., Fang, J., **ao, G., Yan, M., Liu, G.: The synergic impacts of TiO2 nanoparticles and 17β-estradiol (E2) on the immune responses, E2 accumulation, and expression of immune-related genes of the blood clam, Tegillarca granosa. Fish Shellfish Immunol. 81, 29–36 (2018)

    Article  CAS  Google Scholar 

  60. Shi, W., Han, Y., Guo, C., Zhao, X., Liu, S., Su, W., Zha, S., Wang, Y., Liu, G.: Immunotoxicity of nanoparticle nTiO2 to a commercial marine bivalve species, Tegillarca granosa. Fish Shellfish Immunol. 66, 300–306 (2017)

    Article  CAS  Google Scholar 

  61. Guan, X., Shi, W., Zha, S., Rong, J., Su, W., Liu, G.: Neurotoxic impact of acute TiO2 nanoparticle exposure on a benthic marine bivalve mollusk, Tegillarca granosa. Aquat. Toxicol. 200, 241–246 (2018)

    Article  CAS  Google Scholar 

  62. Mezni, A., Alghool, S., Sellami, B., Ben Saber, N., Altalhi, T.: Titanium dioxide nanoparticles: synthesis, characterisations and aquatic ecotoxicity effects. Chem. Ecol. 34, 288–299 (2018)

    Article  CAS  Google Scholar 

  63. Shi, W., Han, Y., Guo, C., Su, W., Zhao, X., Zha, S., Wang, Y., Liu, G.: Ocean acidification increases the accumulation of titanium dioxide nanoparticles (nTiO2) in edible bivalve mollusks and poses a potential threat to seafood safety. Sci. Rep. 9, 1–10 (2019)

    Article  CAS  Google Scholar 

  64. Huang, X., Liu, Y., Liu, Z., Zhao, Z., Dupont, S., Wu, F., Huang, W., Chen, J., Hu, M., Lu, W., Wang, Y.: Impact of zinc oxide nanoparticles and ocean acidification on antioxidant responses of Mytilus coruscus. Chemosphere 196, 182–195 (2018)

    Article  CAS  Google Scholar 

  65. Oliviero, M., Schiavo, S., Rametta, G., Miglietta, M.L., Manzo, S.: Different sizes of ZnO diversely affected the cytogenesis of the sea urchin Paracentrotus lividus. Sci. Total Environ. 607–608, 176–183 (2017)

    Article  CAS  Google Scholar 

  66. Wu, F., Cui, S., Sun, M., **e, Z., Huang, W., Huang, X., Liu, L., Hu, M., Lu, W., Wang, Y.: Combined effects of ZnO NPs and seawater acidification on the haemocyte parameters of thick shell mussel Mytilus coruscus. Sci. Total Environ. 624, 820–830 (2018)

    Article  CAS  Google Scholar 

  67. Falfushynska, H.I., Gnatyshyna, L.L., Ivanina, A.V., Sokolova, I.M., Stoliar, O.B.: Detoxification and cellular stress responses of unionid mussels Unio tumidus from two cooling ponds to combined nano-ZnO and temperature stress. Chemosphere 193, 1127–1142 (2018)

    Article  CAS  Google Scholar 

  68. Schiavo, S., Oliviero, M., Li, J., Manzo, S.: Testing ZnO nanoparticle ecotoxicity: linking time variable exposure to effects on different marine model organisms. Environ. Sci. Pollut. Res. 25, 4871–4880 (2018)

    Article  CAS  Google Scholar 

  69. Manzo, S., Schiavo, S., Oliviero, M., Toscano, A., Ciaravolo, M., Cirino, P.: Immune and reproductive system impairment in adult sea urchin exposed to nanosized ZnO via food. Sci. Total Environ. 599–600, 9–13 (2017)

    Article  CAS  Google Scholar 

  70. Ale, A., Liberatori, G., Vannuccini, M.L., Bergami, E., Ancora, S., Mariotti, G., Bianchi, N., Galdopórpora, J.M., Desimone, M.F., Cazenave, J., Corsi, I.: Exposure to a nanosilver-enabled consumer product results in similar accumulation and toxicity of silver nanoparticles in the marine mussel Mytilus galloprovincialis. Aquat. Toxicol. 211, 46–56 (2019)

    Article  CAS  Google Scholar 

  71. Magesky, A., Ribeiro, C.A. de O.M, Beaulieu, L., Pelletier, É.: Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. Environ. Toxicol. Chem. 36, 1872–1886 (2017)

    Article  CAS  Google Scholar 

  72. Vannuci-Silva, M., Cadore, S., Henry, T.B., Umbuzeiro, G.: Higher silver bioavailability after nanoparticle dietary exposure in marine amphipods. Environ. Toxicol. Chem. 38, 806–810 (2019)

    Article  CAS  Google Scholar 

  73. Tang, C.H., Lin, C.Y., Lee, S.H., Wang, W.H.: Membrane lipid profiles of coral responded to zinc oxide nanoparticle-induced perturbations on the cellular membrane. Aquat. Toxicol. 187, 72–81 (2017)

    Article  CAS  Google Scholar 

  74. Bouallegui, Y., Ben Younes, R., Bellamine, H., Oueslati, R.: Histopathological indices and inflammatory response in the digestive gland of the mussel Mytilus galloprovincialis as biomarker of immunotoxicity to silver nanoparticles. Biomarkers 23, 277–287 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Funding for Science and Technology (FCT) through doctoral grant to Joana C. Almeida [SFRH/BD/139471/2018], and the University of Aveiro, FCT/MEC for the financial support to CESAM and CICECO [UID/AMB/50017/2013; UID/CTM/50011/2013], through national funds and, where applicable, co-financed by the FEDER, within the PT2020 Partnership Agreement. This work was also carried out under the Project inpactus—innovative products and technologies from eucalyptus, Project N.º 21874 funded by Portugal 2020 through European Regional Development Fund (ERDF) in the frame of COMPETE 2020 nº246/AXIS II/2017. This work was also financially supported by the project BISPECIAl: BIvalveS under Polluted Environment and ClImate chAnge PTDC/CTA-AMB/28425/2017 (POCI-01-0145-FEDER-028425) funded by FEDER, through COMPETE2020—Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso E. D. Cardoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Almeida, J.C., Cardoso, C.E.D., Pereira, E., Freitas, R. (2019). Toxic Effects of Metal Nanoparticles in Marine Invertebrates. In: Gonçalves, G., Marques, P. (eds) Nanostructured Materials for Treating Aquatic Pollution. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-33745-2_7

Download citation

Publish with us

Policies and ethics

Navigation