Evaluation of Transfer Learning Techniques with Convolutional Neural Networks (CNNs) to Detect the Existence of Roads in High-Resolution Aerial Imagery

  • Conference paper
  • First Online:
Applied Informatics (ICAI 2019)

Abstract

Infrastructure detection and monitoring traditionally required manual identification of geospatial objects in aerial imagery but advances in deep learning and computer vision enabled the researchers in the field of remote sensing to successfully apply transfer learning from pretrained models on large-scale datasets for the task of geospatial object detection. However, they mostly focused on objects with clearly defined boundaries that are independent of the background (e.g. airports, airplanes, buildings, ships, etc.). What happens when we have to deal with more complicated, continuous objects like roads? In this paper we will review four of the best-known CNN architectures (VGGNet, Inception-V3, Xception, Inception-ResNet) and apply feature extraction and fine-tuning techniques to detect the existence of roads in aerial orthoimages divided in tiles of 256 × 256 pixels in size. We will evaluate each model´s performance on unseen test data using the accuracy metric and compare the results with those obtained by a CNN especially built for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105. Curran Associates Inc, Red Hook (2012)

    Google Scholar 

  2. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition, Ar**v14091556 Cs, (September 2014)

    Google Scholar 

  3. Szegedy, C., et al.: Going Deeper with Convolutions, Ar**v14094842 Cs, September (2014)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition, Ar**v151203385 Cs, December (2015)

    Google Scholar 

  5. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, Ar**v160207261 Cs, February (2016)

    Google Scholar 

  6. Pritt, M., Chern, G.: Satellite image classification with deep learning, In: 2017 IEEE Applied Imagery Pattern Recognition Workshop (AIPR), pp. 1–7. Washington, DC, USA (2017)

    Google Scholar 

  7. Zhou, W., Newsam, S., Li, C., Shao, Z.: PatternNet: a benchmark dataset for performance evaluation of remote sensing image retrieval. ISPRS J. Photogramm. Remote Sens. 145, 197–209 (2018)

    Article  Google Scholar 

  8. Albert, A., Kaur, J., Gonzalez, M.C.: Using convolutional networks and satellite imagery to identify patterns in urban environments at a large scale. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD 2017, pp. 1357–1366. Halifax, NS, Canada, 2017

    Google Scholar 

  9. Chollet, F.: Deep Learning with Python. Manning Publications Co, Shelter Island (2018)

    Google Scholar 

  10. Cai, B., Jiang, Z., Zhang, H., Zhao, D., Yao, Y.: Airport detection using end-to-end convolutional neural network with hard example mining. Remote Sens. 9(11), 1198 (2017)

    Article  Google Scholar 

  11. Yang, H.L., Yuan, J., Lunga, D., Laverdiere, M., Rose, A., Bhaduri, B.: Building extraction at scale using convolutional neural network: map** of the United States. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 11(8), 2600–2614 (2018)

    Article  Google Scholar 

  12. Li, Y., Zhang, Y., Huang, X., Yuille, A.L.: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images. ISPRS J. Photogramm. Remote Sens. 146, 182–196 (2018)

    Article  Google Scholar 

  13. Hutchison, D., et al.: Learning to detect roads in high-resolution aerial images. ECCV 2010. LNCS, vol. 6316, pp. 210–223. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_16

    Chapter  Google Scholar 

  14. Zhang, Z., Liu, Q., Wang, Y.: Road Extraction by Deep Residual U-Net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)

    Article  Google Scholar 

  15. Wang, Q., Gao, J., Yuan, Y.: Embedding Structured Contour and Location Prior in Siamesed Fully Convolutional Networks for Road Detection. IEEE Trans. Intell. Transp. Syst. 19(1), 230–241 (2018)

    Article  Google Scholar 

  16. Alshehhi, R., Marpu, P.R., Woon, W.L., Mura, M.D.: Simultaneous extraction of roads and buildings in remote sensing imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 130, 139–149 (2017)

    Article  Google Scholar 

  17. Henry, C., Azimi, S.M., Merkle, N.: Road segmentation in SAR satellite images with deep fully-convolutional neural networks. IEEE Geosci. Remote Sens. Lett. 15(12), 1867–1871 (2018)

    Article  Google Scholar 

  18. Liu, Y., Yao, J., Lu, X., **a, M., Wang, X., Liu, Y.: RoadNet: learning to comprehensively analyze road networks in complex urban scenes from high-resolution remotely sensed images. IEEE Trans. Geosci. Remote Sens. 57(4), 2043–2056 (2019)

    Article  Google Scholar 

  19. Luque, B., Morros, J.R., Ruiz-Hidalgo, J.: Spatio-temporal road detection from aerial imagery using CNNs, In: Proceedings of the 12th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications,, pp. 493–500. Porto, Portugal (2017)

    Google Scholar 

  20. Woźniak, M., Damaševičius, R., Maskeliūnas, R., Malūkas, U.: Real time path finding for assisted living using deep learning. JUCS - J. Univers. Comput. Sci. 24(4), 475–487 (2018)

    Google Scholar 

  21. Xu, Y., Goodacre, R.: On splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2(3), 249–262 (2018)

    Article  Google Scholar 

  22. May, R.J., Maier, H.R., Dandy, G.C.: Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Netw. 23(2), 283–294 (2010)

    Article  Google Scholar 

  23. Cira, C.I., Alcarria, R., Manso-Callejo, M.A., Serradilla, F.: A deep convolutional neural network to detect the existence of geospatial elements in high-resolution aerial imagery. Proceedings, 19(1), 17 (2019)

    Article  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: A Method for Stochastic Optimization, Ar**v14126980 Cs, (December 2014)

    Google Scholar 

  25. Chen, X., Liu, S., Sun, R., Hong, M.: On the Convergence of A Class of Adam-Type Algorithms for Non-Convex Optimization, Ar**v180802941 Cs Math Stat, (August 2018)

    Google Scholar 

  26. Chollet, F., Xception: Deep Learning with Depthwise Separable Convolutions, Ar**v161002357 Cs, (October 2016)

    Google Scholar 

  27. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks?, Ar**v14111792 Cs, (November 2014)

    Google Scholar 

Download references

Acknowledgments

This research received funding from the Cartobot project, in collaboration with Instituto Geográfico Nacional (IGN), Spain. We thank all Cartobot participants for their help in generating the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Calimanut-Ionut Cira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cira, CI., Alcarria, R., Manso-Callejo, MÁ., Serradilla, F. (2019). Evaluation of Transfer Learning Techniques with Convolutional Neural Networks (CNNs) to Detect the Existence of Roads in High-Resolution Aerial Imagery. In: Florez, H., Leon, M., Diaz-Nafria, J., Belli, S. (eds) Applied Informatics. ICAI 2019. Communications in Computer and Information Science, vol 1051. Springer, Cham. https://doi.org/10.1007/978-3-030-32475-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32475-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32474-2

  • Online ISBN: 978-3-030-32475-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation