Endocrinopathies

  • Chapter
  • First Online:
Male Infertility

Abstract

Spermatogenesis depends on an intricate interplay of hormonal factors both centrally and in the testis. Centrally, the hypothalamus releases gonadotropin-releasing hormone (GnRH), which acts on the anterior pituitary to cause secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). At the level of the testis, FSH acts on Sertoli cells to induce the maturation process in spermatogonia. LH exerts its effect on Leydig cells, stimulating production of testosterone. Effective spermatogenesis requires local testosterone concentrations to be much higher than serum concentrations. This intratesticular testosterone then acts indirectly to stimulate germ cell maturation through actions on Sertoli cells. Although endocrinopathies only account for a small minority of cases of male infertility, about 1%–2%, the treatment of these conditions offers patients a strategy of directed therapy. Broad classification of endocrinopathies involves two main categories, that is, hormonal deficiency and hormonal excess, with specific hormonal abnormalities falling under each of the above categorizations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lipshultz LI, Howards SS, Niederberger CS. Infertility in the male. 4th ed. Cambridge, UK/New York: Cambridge University Press; 2009. xi, 677 p., 8 p. of plates p.

    Book  Google Scholar 

  2. Kim HH, Schlegel PN. Endocrine manipulation in male infertility. Urol Clin North Am. 2008;35(2):303–18, x.

    Article  PubMed  Google Scholar 

  3. Sussman EM, Chudnovsky A, Niederberger CS. Hormonal evaluation of the infertile male: has it evolved? Urol Clin North Am. 2008;35(2):147–55, vii.

    Article  PubMed  Google Scholar 

  4. Coviello AD, Matsumoto AM, Bremner WJ, Herbst KL, Amory JK, Anawalt BD, et al. Low-dose human chorionic gonadotropin maintains intratesticular testosterone in normal men with testosterone-induced gonadotropin suppression. J Clin Endocrinol Metab. 2005;90(5):2595–602.

    Article  CAS  PubMed  Google Scholar 

  5. Bouloux PM, Nieschlag E, Burger HG, Skakkebaek NE, Wu FC, Handelsman DJ, et al. Induction of spermatogenesis by recombinant follicle-stimulating hormone (puregon) in hypogonadotropic azoospermic men who failed to respond to human chorionic gonadotropin alone. J Androl. 2003;24(4):604–11.

    Article  CAS  PubMed  Google Scholar 

  6. Schiff JD, Ramirez ML, Bar-Chama N. Medical and surgical management male infertility. Endocrinol Metab Clin N Am. 2007;36(2):313–31.

    Article  Google Scholar 

  7. Liu PY, Baker HW, Jayadev V, Zacharin M, Conway AJ, Handelsman DJ. Induction of spermatogenesis and fertility during gonadotropin treatment of gonadotropin-deficient infertile men: predictors of fertility outcome. J Clin Endocrinol Metab. 2009;94(3):801–8.

    Article  CAS  PubMed  Google Scholar 

  8. Burris AS, Clark RV, Vantman DJ, Sherins RJ. A low sperm concentration does not preclude fertility in men with isolated hypogonadotropic hypogonadism after gonadotropin therapy. Fertil Steril. 1988;50(2):343–7.

    Article  CAS  PubMed  Google Scholar 

  9. Miyagawa Y, Tsujimura A, Matsumiya K, Takao T, Tohda A, Koga M, et al. Outcome of gonadotropin therapy for male hypogonadotropic hypogonadism at university affiliated male infertility centers: a 30-year retrospective study. J Urol. 2005;173(6):2072–5.

    Article  CAS  PubMed  Google Scholar 

  10. Farhat R, Al-zidjali F, Alzahrani AS. Outcome of gonadotropin therapy for male infertility due to hypogonadotrophic hypogonadism. Pituitary. 2010;13(2):105–10.

    Article  CAS  PubMed  Google Scholar 

  11. Whitten SJ, Nangia AK, Kolettis PN. Select patients with hypogonadotropic hypogonadism may respond to treatment with clomiphene citrate. Fertil Steril. 2006;86(6):1664–8.

    Article  CAS  PubMed  Google Scholar 

  12. Ioannidou-Kadis S, Wright PJ, Neely RD, Quinton R. Complete reversal of adult-onset isolated hypogonadotropic hypogonadism with clomiphene citrate. Fertil Steril. 2006;86(5):1513.e5–9.

    Google Scholar 

  13. Burge MR, Lanzi RA, Skarda ST, Eaton RP. Idiopathic hypogonadotropic hypogonadism in a male runner is reversed by clomiphene citrate. Fertil Steril. 1997;67(4):783–5.

    Article  CAS  PubMed  Google Scholar 

  14. Ramasamy R, Scovell JM, Kovac JR, Lipshultz LI. Testosterone supplementation versus clomiphene citrate for hypogonadism: an age matched comparison of satisfaction and efficacy. J Urol. 2014;192(3):875–9.

    Article  CAS  PubMed  Google Scholar 

  15. Layton JB, Li D, Meier CR, Sharpless JL, Sturmer T, Jick SS, et al. Testosterone lab testing and initiation in the United Kingdom and the United States, 2000 to 2011. J Clin Endocrinol Metab. 2014;99(3):835–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zirkin BR, Santulli R, Awoniyi CA, Ewing LL. Maintenance of advanced spermatogenic cells in the adult rat testis: quantitative relationship to testosterone concentration within the testis. Endocrinology. 1989;124(6):3043–9.

    Article  CAS  PubMed  Google Scholar 

  17. Raman JD, Schlegel PN. Aromatase inhibitors for male infertility. J Urol. 2002;167(2 Pt 1):624–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ramasamy R, Ricci JA, Palermo GD, Gosden LV, Rosenwaks Z, Schlegel PN. Successful fertility treatment for Klinefelter's syndrome. J Urol. 2009;182(3):1108–13.

    Article  CAS  PubMed  Google Scholar 

  19. Samango-Sprouse CA, Sadeghin T, Mitchell FL, Dixon T, Stapleton E, Kingery M, et al. Positive effects of short course androgen therapy on the neurodevelopmental outcome in boys with 47,XXY syndrome at 36 and 72 months of age. Am J Med Genet A. 2013;161A(3):501–8.

    Article  PubMed  CAS  Google Scholar 

  20. Davis SM, Rogol AD, Ross JL. Testis development and fertility potential in boys with Klinefelter syndrome. Endocrinol Metab Clin N Am. 2015;44(4):843–65.

    Article  Google Scholar 

  21. Lo JO, Cori DF, Norton ME, Caughey AB. Noninvasive prenatal testing. Obstet Gynecol Surv. 2014;69(2):89–99.

    Article  PubMed  Google Scholar 

  22. Sahoo DK, Roy A, Bhanja S, Chainy GB. Hypothyroidism impairs antioxidant defence system and testicular physiology during development and maturation. Gen Comp Endocrinol. 2008;156(1):63–70.

    Article  CAS  PubMed  Google Scholar 

  23. Romano RM, Gomes SN, Cardoso NC, Schiessl L, Romano MA, Oliveira CA. New insights for male infertility revealed by alterations in spermatic function and differential testicular expression of thyroid-related genes. Endocrine. 2017;55(2):607–17.

    Article  CAS  PubMed  Google Scholar 

  24. Choudhury S, Chainy GB, Mishro MM. Experimentally induced hypo- and hyper-thyroidism influence on the antioxidant defence system in adult rat testis. Andrologia. 2003;35(3):131–40.

    Article  CAS  PubMed  Google Scholar 

  25. Griboff SI. Semen analysis in myxedema. Fertil Steril. 1962;13:436–43.

    Article  CAS  PubMed  Google Scholar 

  26. Meeker JD, Godfrey-Bailey L, Hauser R. Relationships between serum hormone levels and semen quality among men from an infertility clinic. J Androl. 2007;28(3):397–406.

    Article  CAS  PubMed  Google Scholar 

  27. Krassas GE, Papadopoulou F, Tziomalos K, Zeginiadou T, Pontikides N. Hypothyroidism has an adverse effect on human spermatogenesis: a prospective, controlled study. Thyroid. 2008;18(12):1255–9.

    Article  CAS  PubMed  Google Scholar 

  28. Dohle GR, Smit M, Weber RF. Androgens and male fertility. World J Urol. 2003;21(5):341–5.

    Article  CAS  PubMed  Google Scholar 

  29. Turek PJ, Williams RH, Gilbaugh JH 3rd, Lipshultz LI. The reversibility of anabolic steroid-induced azoospermia. J Urol. 1995;153(5):1628–30.

    Article  CAS  PubMed  Google Scholar 

  30. Menon DK. Successful treatment of anabolic steroid-induced azoospermia with human chorionic gonadotropin and human menopausal gonadotropin. Fertil Steril. 2003;79(Suppl 3):1659–61.

    Article  PubMed  Google Scholar 

  31. Tan RS, Vasudevan D. Use of clomiphene citrate to reverse premature andropause secondary to steroid abuse. Fertil Steril. 2003;79(1):203–5.

    Article  PubMed  Google Scholar 

  32. Coward RM, Rajanahally S, Kovac JR, Smith RP, Pastuszak AW, Lipshultz LI. Anabolic steroid induced hypogonadism in young men. J Urol. 2013;190(6):2200–5.

    Article  CAS  PubMed  Google Scholar 

  33. Kanayama G, Brower KJ, Wood RI, Hudson JI, Pope HG Jr. Anabolic-androgenic steroid dependence: an emerging disorder. Addiction. 2009;104(12):1966–78.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Falhammar H, Nystrom HF, Ekstrom U, Granberg S, Wedell A, Thoren M. Fertility, sexuality and testicular adrenal rest tumors in adult males with congenital adrenal hyperplasia. Eur J Endocrinol. 2012;166(3):441–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jaaskelainen J, Kiekara O, Hippelainen M, Voutilainen R. Pituitary gonadal axis and child rate in males with classical 21-hydroxylase deficiency. J Endocrinol Investig. 2000;23(1):23–7.

    Article  CAS  Google Scholar 

  36. Arlt W, Willis DS, Wild SH, Krone N, Doherty EJ, Hahner S, et al. Health status of adults with congenital adrenal hyperplasia: a cohort study of 203 patients. J Clin Endocrinol Metab. 2010;95(11):5110–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Murphy H, George C, de Kretser D, Judd S. Successful treatment with ICSI of infertility caused by azoospermia associated with adrenal rests in the testes: case report. Hum Reprod. 2001;16(2):263–7.

    Article  CAS  PubMed  Google Scholar 

  38. Yang RM, Fefferman RA, Shapiro CE. Reversible infertility in a man with 21-hydroxylase deficiency congenital adrenal hyperplasia. Fertil Steril. 2005;83(1):223–5.

    Article  PubMed  Google Scholar 

  39. Rohayem J, Tuttelmann F, Mallidis C, Nieschlag E, Kliesch S, Zitzmann M. Restoration of fertility by gonadotropin replacement in a man with hypogonadotropic azoospermia and testicular adrenal rest tumors due to untreated simple virilizing congenital adrenal hyperplasia. Eur J Endocrinol. 2014;170(4):K11–7.

    Article  CAS  PubMed  Google Scholar 

  40. Pavlovich CP, King P, Goldstein M, Schlegel PN. Evidence of a treatable endocrinopathy in infertile men. J Urol. 2001;165(3):837–41.

    Article  CAS  PubMed  Google Scholar 

  41. Roth MY, Amory JK, Page ST. Treatment of male infertility secondary to morbid obesity. Nat Clin Pract Endocrinol Metab. 2008;4(7):415–9.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Abalovich M, Levalle O, Hermes R, Scaglia H, Aranda C, Zylbersztein C, et al. Hypothalamic-pituitary-testicular axis and seminal parameters in hyperthyroid males. Thyroid. 1999;9(9):857–63.

    Article  CAS  PubMed  Google Scholar 

  43. Krassas GE, Pontikides N, Deligianni V, Miras K. A prospective controlled study of the impact of hyperthyroidism on reproductive function in males. J Clin Endocrinol Metab. 2002;87(8):3667–71.

    Article  CAS  PubMed  Google Scholar 

  44. Thorner MO, McNeilly AS, Hagan C, Besser GM. Long-term treatment of galactorrhoea and hypogonadism with bromocriptine. Br Med J. 1974;2(5916):419–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. De Rosa M, Colao A, Di Sarno A, Ferone D, Landi ML, Zarrilli S, et al. Cabergoline treatment rapidly improves gonadal function in hyperprolactinemic males: a comparison with bromocriptine. Eur J Endocrinol. 1998;138(3):286–93.

    Article  PubMed  Google Scholar 

  46. De Rosa M, Ciccarelli A, Zarrilli S, Guerra E, Gaccione M, Di Sarno A, et al. The treatment with cabergoline for 24 month normalizes the quality of seminal fluid in hyperprolactinaemic males. Clin Endocrinol. 2006;64(3):307–13.

    Article  CAS  Google Scholar 

  47. Gillam MP, Molitch ME, Lombardi G, Colao A. Advances in the treatment of prolactinomas. Endocr Rev. 2006;27(5):485–534.

    Article  CAS  PubMed  Google Scholar 

  48. Ribeiro RS, Abucham J. Recovery of persistent hypogonadism by clomiphene in males with prolactinomas under dopamine agonist treatment. Eur J Endocrinol. 2009;161(1):163–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Brannigan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haywood, S., Lam, I., Laborde, E.L., Brannigan, R. (2020). Endocrinopathies. In: Parekattil, S., Esteves, S., Agarwal, A. (eds) Male Infertility. Springer, Cham. https://doi.org/10.1007/978-3-030-32300-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32300-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32299-1

  • Online ISBN: 978-3-030-32300-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation