Optical Properties of Tissues in the Near Infrared: Their Relevance for Optical Bioimaging

  • Chapter
  • First Online:
Near Infrared-Emitting Nanoparticles for Biomedical Applications

Abstract

Light in the near infrared has advantageous properties such as reduced scattering and higher depth of penetration that make it ideal for optical imaging either in transmission or in fluorescence. This chapter gives an overview of the physics behind light propagation, the optical properties of biological tissues and finally presents the potential benefits that this part of the spectrum can offer to imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arranz A, Dong D, Zhu S, Savakis C, Tian J, Ripoll J (2015) In-vivo optical tomography of small scattering specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster. Sci Rep 4(1):7325

    Article  CAS  Google Scholar 

  2. Arridge SR, Schotland JC (2009) Optical tomography: forward and inverse problems. Inverse Prob 25(12):123010

    Article  Google Scholar 

  3. Bashkatov AN, Genina EA, Kochubey VI, Tuchin VV (2005) Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J Phys D Appl Phys 38(15):2543–2555

    Article  CAS  Google Scholar 

  4. Born M, Wolf E, Bhatia AB, Clemmow PC, Gabor D, Stokes AR, Taylor AM, Wayman PA, Wilcock WL (1999) Principles of optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Bosschaart N, Edelman GJ, Aalders MCG, van Leeuwen TG, Faber DJ (2014) A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med Sci 29(2):453–479

    Article  Google Scholar 

  6. Carr JA, Aellen M, Franke D, So PTC, Bruns OT, Bawendi MG (2018) Absorption by water increases fluorescence image contrast of biological tissue in the shortwave infrared. Proc Natl Acad Sci 115(37):9080–9085

    Article  CAS  Google Scholar 

  7. Carr JA, Franke D, Caram JR, Perkinson CF, Saif M, Askoxylakis V, Datta M, Fukumura D, Jain RK, Bawendi MG, Bruns OT (2018) Shortwave infrared fluorescence imaging with the clinically approved near-infrared dye indocyanine green. Proc Natl Acad Sci 115(17):4465–4470

    Article  CAS  Google Scholar 

  8. Del Rosal B, Villa I, Jaque D, Sanz-Rodríguez F (2016) In vivo autofluorescence in the biological windows: the role of pigmentation. J Biophoton 9(10):1059–1067

    Article  CAS  Google Scholar 

  9. Diao S, Blackburn JL, Hong G, Antaris AL, Chang J, Wu JZ, Zhang B, Cheng K, Kuo CJ, Dai H (2015) Fluorescence imaging in vivo at wavelengths beyond 1500 nm. Angew Chem Int Ed 54(49):14758–14762

    Article  CAS  Google Scholar 

  10. Durduran T, Yodh AG, Chance B (1997) Does the photon-diffusion coefficient depend on absorption? J Opt Soc Am A Opt Image Sci Vis 14(12):3358–3365

    Article  CAS  Google Scholar 

  11. Fang Q, Boas DA (2009) Monte Carlo simulation of photon migration in 3D turbid media accelerated by graphics processing units. Opt Exp 17(22):20178

    Article  CAS  Google Scholar 

  12. Fieramonti L, Bassi A, Foglia EA, Pistocchi A, D’Andrea C, Valentini G, Cubeddu R, de Silvestri S, Cerullo G, Cotelli F (2012) Time-gated optical projection tomography allows visualization of adult zebrafish internal structures. PLoS One 7(11):1–7

    Article  CAS  Google Scholar 

  13. Hong G, Diao S, Chang J, Antaris AL, Chen C, Zhang B, Zhao S, Atochin DN, Huang PL, Andreasson KI, Kuo CJ, Dai H (2014) Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat Photon 8(9):723–730

    Article  CAS  Google Scholar 

  14. Hong G, Antaris AL, Dai H (2017) Near-infrared fluorophores for biomedical imaging. Nat Biomed Eng 1(1):0010

    Article  CAS  Google Scholar 

  15. Ishimaru A (1978) Wave propagation and scattering in random media. Elsevier, New York

    Google Scholar 

  16. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(11):R37–R61

    Article  Google Scholar 

  17. Mie G (1908) Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 330(3):377–445

    Article  Google Scholar 

  18. Ntziachristos V, Ripoll J, Weissleder R (2002) Would near-infrared fluorescence signals propagate through large human organs for clinical studies? Opt Lett 27(5):333

    Article  Google Scholar 

  19. Olarte OE, Andilla J, Gualda EJ, Loza-Alvarez P (2018) Light-sheet microscopy: a tutorial. Adv Opt Photon 10(1):111

    Article  Google Scholar 

  20. Ripoll J (2012) Principles of diffuse light propagation: light propagation in tissues with applications in biology and medicine. World Scientific, Singapore

    Google Scholar 

  21. Ripoll J, Nieto-Vesperinas M, Carminati R (1999) Spatial resolution of diffuse photon density waves. J Opt Soc Am A 16(6):1466

    Article  Google Scholar 

  22. Ripoll J, Yessayan D, Zacharakis G, Ntziachristos V (2005) Experimental determination of photon propagation in highly absorbing and scattering media. J Opt Soc Am A Opt Image Sci Vis 22(3):546–551

    Article  Google Scholar 

  23. Ripoll J, Meyer H, Garofalakis A (2009) In vivo optical tomography: from diffusion to ballistic. Opt Mater 31(7):1082–1085

    Article  CAS  Google Scholar 

  24. Smith AM, Mancini MC, Nie S (2009) Bioimaging: second window for in vivo imaging. Nat Nanotechnol 4(11):710–711

    Article  CAS  Google Scholar 

  25. Spott T, Svaasand LO (2000) Collimated light sources in the diffusion approximation. Appl Opt 39(34):6453–6465

    Article  CAS  Google Scholar 

  26. Tanzid M, Hogan NJ, Sobhani A, Robatjazi H, Pediredla AK, Samaniego A, Veeraraghavan A, Halas NJ (2016) Absorption-induced image resolution enhancement in scattering media. ACS Photon 3(10):1787–1793

    Article  CAS  Google Scholar 

  27. Tarvainen T, Vauhkonen M, Kolehmainen V (2005) Coupled radiative transfer equation and diffusion approximation model for photon migration in turbid medium with low-scattering and non-scattering. Phys Med Biol 4913(20):4913–4930

    Article  CAS  Google Scholar 

  28. Wang L, Jacques SL, Zheng L (1995) MCML – Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Prog Biomed 47(2):131–146

    Article  CAS  Google Scholar 

  29. Yaroshevsky A, Glasser Z, Granot E, Sternklar S (2011) Transition from the ballistic to the diffusive regime in a turbid medium. Opt Lett 36(8):1395

    Article  Google Scholar 

  30. Yoo KM, Liu F, Alfano RR (1990) When does the diffusion approximation fail to describe photon transport in random media? Phys Rev Lett 64(22):2647–2650

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Asier Marcos-Vidal or Jorge Ripoll .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marcos-Vidal, A., Vaquero, J.J., Ripoll, J. (2020). Optical Properties of Tissues in the Near Infrared: Their Relevance for Optical Bioimaging. In: Benayas, A., Hemmer, E., Hong, G., Jaque, D. (eds) Near Infrared-Emitting Nanoparticles for Biomedical Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-32036-2_1

Download citation

Publish with us

Policies and ethics

Navigation