Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Organic semiconductors (OS) are applied in many electronic devices, for instance, OLEDs. The main advantages of these materials are focused in flexibility, high possibilities for structural changes and synthesis. The chemical structure of OS is based on a polymeric chain formed by π conjugated bonds, which act as charge carriers for conductive and optical properties. One of the most investigated polymeric structure is Poly(3,4-ethylenedioxythiophene) (PEDOT) due to its planar molecular structure. To investigate the charge bulk influence formed by \( \uppi \) conjugated bonds on excitation energy and band-gap of PEDOT were performed simulations in PM6, DFT and TD-DFT levels of theory. Consequently, Density of States (DOS) analysis showed an association between intermediary energy levels formed inside monomer band-gap and excitation energy profiles as essential factor to change electronic properties of PEDOT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. IEA and OECD: Solar Energy Perspectives (2011)

    Google Scholar 

  2. Kleider, J.P., Alvarez, J., Brézard-Oudot, A., Gueunier-Farret, M.E., Maslova, O.: Sol. Energy Mater. Sol. Cells 135, 8–16 (2015)

    Article  Google Scholar 

  3. Hedström, S., Persson, P.: J. Phys. Chem. C 116, 26700–26706 (2012)

    Article  Google Scholar 

  4. Constantinou, I., Lai, T.H., Zhao, D., Klump, E.D., Deininger, J.J., Lo, C.K., Reynolds, J.R.: ACS Appl. Mater. Interfaces. 7, 4826–4832 (2015)

    Article  Google Scholar 

  5. Lanzi, M., Salatelli, E., Benelli, T., Caretti, D., Giorgini, L., Di-Nicola, F.P.: J. Appl. Polym. Sci. 132, n/a (2015)

    Google Scholar 

  6. Hermerschmidt, F., Kalogirou, A.S., Min, J., Zissimou, G.A., Tuladhar, S.M., Ameri, T., Faber, H., Itskos, G., Choulis, S.A., Anthopoulos, T.D., Bradley, D.D.C., Nelson, J., Brabec, C.J., Koutentis, P.A.: J. Mater. Chem. C 3, 2358–2365 (2015)

    Article  Google Scholar 

  7. Raïssi, M., Vignau, L., Cloutet, E., Ratier, B.: Org. Electron. 21, 86–91 (2015)

    Article  Google Scholar 

  8. Coropceanu, V., Cornil, J., da Silva Filho, D.A., Olivier, Y., Silbey, R., Bredas, J.L.: Chem. Rev. 107, 926–952 (2007)

    Article  Google Scholar 

  9. Facchetti, A.: Chem. Mater. 23, 733–758 (2011)

    Article  Google Scholar 

  10. Tu, G., Bilge, A., Adamczyk, S., Forster, M., Heiderhoff, R., Balk, L.J., Mühlbacher, D., Morana, M., Koppe, M., Scharber, M.C., Choulis, S.A., Brabec, C.J., Scherf, U.: Macromol. Rapid Commun. 28, 1781–1785 (2007)

    Article  Google Scholar 

  11. Dang, M.T., Hirsch, L., Wantz, G., Wuest, J.D.: Chem. Rev. 113, 3734–3765 (2013)

    Article  Google Scholar 

  12. Nikoofard, H., Gholami, M.: C. R. Chim. 17, 1034–1040 (2014)

    Article  Google Scholar 

  13. Wen, L., Jeong, D.C., Javid, A., Kim, S., Nam, J.D., Song, C., Han, J.G.: Thin Solid Films 587, 66–70 (2015)

    Article  Google Scholar 

  14. Das, S., Chatterjee, D.P., Ghosh, R., Nandi, A.K.: RSC Adv. 5, 20160–20177 (2015)

    Article  Google Scholar 

  15. Liu, J., Pathak, S., Stergiopoulos, T., Leijtens, T., Wojciechowski, K., Schumann, S., Kausch-Busies, N., Snaith, H.J.: J. Phys. Chem. Lett. 6, 1666–1673 (2015)

    Article  Google Scholar 

  16. Park, B., Pazoki, M., Aitola, K., Jeong, S., Johansson, E.M.J., Hagfeldt, A., Boschloo, G.: ACS Appl. Mater. Interfaces. 6, 2074–2079 (2014)

    Article  Google Scholar 

  17. Apperloo, J.J., Groenendaal, L.B., Verheyen, H., Jayakannan, M., Janssen, R.A.J., Dkhissi, A., Beljonne, D., Lazzaroni, R., Brédas, J.L.: Chem. Eur. J. 8, 2384–2396 (2002)

    Article  Google Scholar 

  18. Stewart, J.J.P.: J. Mol. Model. 13, 1173–1213 (2007)

    Article  Google Scholar 

  19. Stewart, J.: MOPAC2012, Stewart Computational Chemistry. Colorado Springs, CO, USA. http://OpenMOPAC.net

  20. Camp, R.N., King, H.F.: J. Chem. Phys. 75, 268–274 (1981)

    Article  Google Scholar 

  21. Gordon, M.S., Schmidt, M.W.: In: In: Sloot, P.M.A., Abramson, D., Bogdanov, A.V., Gorbachev, Y.E., Dongarra, J.J., Zomaya, A.Y. (eds.) Computational Science—ICCS 2003, pp. 75–83. Springer, Berlin, Heidelberg (2003)

    Google Scholar 

  22. Gordon, M.S., Schmidt, M.W.: In: Dykstra, C., Frenking, G., Kim, K., Scuseria, G. (eds.) Theory and Applications of Computational Chemistry, pp. 1167–1189. Elsevier, Amsterdam (2005)

    Google Scholar 

  23. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A.: J. Comput. Chem. 14, 1347–1363 (1993)

    Article  Google Scholar 

  24. Pulay, P.: J. Comput. Chem. 3, 556–560 (1982)

    Article  Google Scholar 

  25. Elliott, P., Furche, F., Burke, K.: In: Lipkowitz, K.B., Cundari, T.R. (eds.) Reviews in Computational Chemistry, pp. 91–165. Wiley (2008)

    Google Scholar 

  26. Durães, J.A., da Silva Filho, D.A., Ceschin, A.M., Sales, M.J.A., Martins, J.B.L.: J. Mol. Model. 20, 1–6 (2014)

    Article  Google Scholar 

  27. Kaloni, T.P., Schreckenbach, G., Freund, M.S.: J. Phys. Chem. C 119, 3979–3989 (2015)

    Article  Google Scholar 

  28. Lee, K.H., Song, D.H., Park, B.J., Chin, I.J., Choi, H.J.: Macromol. Theor. Simul. 18, 287–298 (2009)

    Article  Google Scholar 

  29. Olasunkanmi, L.O., Ige, J., Ogunlusi, G.O., Olasunkanmi, L.O., Ige, J., Ogunlusi, G.O.: J. Chem. J. Chem. e640649 (2012–2013)

    Google Scholar 

  30. de Silva, K.M.N., Hwang, E., Serem, W.K., Fronczek, F.R., Garno, J.C., Nesterov, E.E.: ACS Appl. Mater. Interfaces. 4, 5430–5441 (2012)

    Article  Google Scholar 

  31. Harrison, W.A.: Elementary electronic Structure. World Scientific, Stanford University (2005)

    Google Scholar 

  32. Groenendaal, L., Jonas, F., Freitag, D., Pielartzik, H., Reynolds, J.R.: Adv. Mater. 12, 481–494 (2000)

    Article  Google Scholar 

  33. Yang, Y.L., Lee, Y.H., Lee, Y.P., Chiang, C.J., Shen, C., Wu, C.C., Ohta, Y., Yokozawa, T., Dai, C.A.: Polym. Int. 63, 2068–2075 (2014)

    Article  Google Scholar 

  34. Silbey, R.: In: Zyss, D.S.C. (eds.) Nonlinear Optical Properties of Organic Molecules and Crystals, pp. 3–20. Academic Press (1978)

    Google Scholar 

  35. Dkhissi, A., Beljonne, D., Lazzaroni, R., Louwet, F., Groenendaal, B.: Theor. Chem. Acc. 119, 305–312 (2007)

    Article  Google Scholar 

  36. Wasserberg, D., Meskers, S.C.J., Janssen, R.A.J., Mena-Osteritz, E., Bäuerle, P.: J. Am. Chem. Soc. 128, 17007–17017 (2006)

    Article  Google Scholar 

  37. López-Ruiz, N., Hernández-Bélanger, D., Carvajal, M.A., Capitán-Vallvey, L.F., Palma, A.J., Martínez-Olmos, A.: Sens. Actuators B Chem. 216, 595–602 (2015)

    Article  Google Scholar 

  38. Palmeira, T., Berberan-Santos, M.N.: Chem. Phys. 445, 14–20 (2014)

    Article  Google Scholar 

  39. Tsipis, A.C., Stalikas, A.V.: J. Comput. Chem. 36, 1334–1347 (2015)

    Article  Google Scholar 

  40. Yin, S.H., Liu, Y., Zhang, W., Guo, M.X., Song, P.: J. Comput. Chem. 31, 2056–2062 (2010)

    Google Scholar 

Download references

Acknowledgements

All authors thanks to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação Araucária and State University of Ponta Grossa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. de Lazaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Andrade, A.M., Camilo, A., de Lazaro, S.R. (2020). A TD-DFT Simulation on Organic Polymer: The Case of PEDOT. In: La Porta, F., Taft, C. (eds) Emerging Research in Science and Engineering Based on Advanced Experimental and Computational Strategies. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-31403-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31403-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31402-6

  • Online ISBN: 978-3-030-31403-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation