Averaging Symmetric Positive-Definite Matrices

  • Chapter
  • First Online:
Handbook of Variational Methods for Nonlinear Geometric Data
  • 2000 Accesses

Abstract

Symmetric positive definite (SPD) matrices have become fundamental computational objects in many areas, such as medical imaging, radar signal processing, and mechanics. For the purpose of denoising, resampling, clustering or classifying data, it is often of interest to average a collection of symmetric positive definite matrices. This paper reviews and proposes different averaging techniques for symmetric positive definite matrices that are based on Riemannian optimization concepts.

This work was supported by the Fundamental Research Funds for the Central Universities (No. 20720190060).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The family of Riemanian metrics that satisfy the affine invariance property is described in [34]; see also Sect. 20.5. The Riemannian metric (20.2) is also called the natural metric [31], the trace metric [43], or the Rao–Fisher metric [63].

  2. 2.

    http://bezout.dm.unipi.it/software/mmtoolbox/.

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2008)

    Book  MATH  Google Scholar 

  2. Absil, P.A., Gousenbourger, P.Y., Striewski, P., Wirth, B.: Differentiable piecewise-Bézier surfaces on Riemannian manifolds. SIAM J. Imag. Sci. 9(4), 1788–1828 (2016)

    Article  MATH  Google Scholar 

  3. Afsari, B.: Riemannian L p center of mass: existence, uniqueness, and convexity. Proc. Am. Math. Soc. 139(2), 655–673 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Afsari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control. Optim. 51(3), 2230–2260 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Agueh, M., Carlier, G.: Barycenters in the Wasserstein space. SIAM J. Math. Anal. 43(2), 904–924 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Alvarez-Esteban, P.C., Del Barrio, E., Cuesta-Albertos, J.A., Matran, C.: A fixed-point approach to barycenters in Wasserstein space. J. Math. Anal. Appl. 441(2), 744–762 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alyani, K., Congedo, M., Moakher, M.: Diagonality measures of Hermitian positive-definite matrices with application to the approximate joint diagonalization problem. Linear Algebra Appl. 528(1), 290–320 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ando, T., Li, C.K., Mathias, R.: Geometric means. Linear Algebra Appl. 385, 305–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Angulo, J.: Structure tensor image filtering using Riemannian L 1 and L center-of-mass. Image Anal. Stereology 33(2), 95–105 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Arandjelovic, O., Shakhnarovich, G., Fisher, J., Cipolla, R., Darrell, T.: Face recognition with image sets using manifold density divergence. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol. 1, pp. 581–588. IEEE, Piscataway (2005)

    Google Scholar 

  11. Arnaudon, M., Nielsen, F.: On approximating the Riemannian 1-center. Comput. Geom. 46(1), 93–104 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  13. Badoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of Fourteenth ACM-SIAM Symposium on Discrete Algorithms (2003)

    Google Scholar 

  14. Badoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. 40(1), 14–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barbaresco, F.: Innovative tools for radar signal processing based on Cartan’s geometry of SPD matrices and information geometry. In: Proceedings of IEEE Radar Conference, pp. 1–6 (2008)

    Google Scholar 

  16. Barmpoutis, A., Vemuri, B.C., Shepherd, T.M., Forder, J.R.: Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Trans. Med. Imaging 26(11), 1537–1546 (2007)

    Article  Google Scholar 

  17. Bhatia, R.: Positive Definite Matrices. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  18. Bhatia, R., Holbrook, J.: Riemannian geometry and matrix geometric means. Linear Algebra Appl. 413(2–3), 594–618 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bhatia, R., Karandikar, R.L.: Monotonicity of the matrix geometric mean. Math. Ann. 353(4), 1453–1467 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bhatia, R., Jain, T., Lim, Y.: On the Bures Wasserstein distance between positive definite matrices. Expo. Math. 37(2), 165–191 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Bini, D.A., Iannazzo, B.: Computing the Karcher mean of symmetric positive definite matrices. Linear Algebra Appl. 438(4), 1700–1710 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bregman, L.V.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7(3), 200–217 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  23. Charfi, M., Chebbi, Z., Moakher, M., Vemuri, B.C.: Bhattacharyya median of symmetric positive-definite matrices and application to the denoising of diffusion-tensor fields. In: 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI), pp. 1227–1230. IEEE, Piscataway (2013)

    Google Scholar 

  24. Chebbi, Z., Moakher, M.: Means of Hermitian positive-definite matrices based on the log-determinant α-divergence function. Linear Algebra Appl. 436(7), 1872–1889 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cheng, G., Salehian, H., Vemuri, B.: Efficient recursive algorithms for computing the mean diffusion tensor and applications to DTI segmentation. In: Computer Vision–ECCV 2012, pp. 390–401 (2012)

    Google Scholar 

  26. Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.: Efficient similarity search for covariance matrices via the Jensen-Bregman LogDet divergence. In: 2011 IEEE International Conference on Proceedings of Computer Vision (ICCV), pp. 2399–2406. IEEE, Piscatawsay (2011)

    Google Scholar 

  27. Cherian, A., Sra, S., Banerjee, A., Papanikolopoulos, N.: Jensen-Bregman logdet divergence with application to efficient similarity search for covariance matrices. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2161–2174 (2013)

    Article  Google Scholar 

  28. Cichocki, A., Cruces, S., Amari, S.-i.: Log-determinant divergences revisited: alpha-beta and gamma log-det divergences. Entropy 17(5), 2988–3034 (2015)

    Google Scholar 

  29. Dhillon, I.S., Tropp, J.A.: Matrix nearness problems with Bregman divergences. SIAM J. Matrix Anal. Appl. 29(4), 1120–1146 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dryden, I.L., Pennec, X., Peyrat, J.M.: Power euclidean metrics for covariance matrices with application to diffusion tensor imaging (2010). ar**v:1009.3045v1

    Google Scholar 

  31. Faraut, J., Koranyi, A.: Analysis on Symmetric Cones. Oxford University Press, New York (1994)

    MATH  Google Scholar 

  32. Fletcher, P.T., Joshi, S.: Riemannian geometry for the statistical analysis of diffusion tensor data. Signal Process. 87(2), 250–262 (2007)

    Article  MATH  Google Scholar 

  33. Fletcher, P.T., Venkatasubramanian, S., Joshi, S.: The geometric median on Riemannian manifolds with application to robust atlas estimation. NeuroImage 45(1), S143–S152 (2009)

    Article  Google Scholar 

  34. Forstner, W., Moonen, B.: A metric for covariance matrices. In: Grafarend, E.W., Krum, F.W., Schwarze, V.S. (eds), Geodesy-The Challenge of the 3rd Millennium. Springer, Berlin (2003)

    Google Scholar 

  35. Harandi, M., Basirat, M., Lovell, B.C.: Coordinate coding on the Riemannian manifold of symmetric positive-definite matrices for image classification. In: Riemannian Computing in Computer Vision, pp. 345–361. Springer, Berlin (2016)

    Google Scholar 

  36. Hosseini, S., Huang, W., Yousefpour, R.: Line search algorithms for locally Lipschitz functions on Riemannian manifolds. SIAM J. Optim. 28(1), 596–619 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  37. Huang, W.: Optimization algorithms on Riemannian manifolds with applications. Ph.D. Thesis. Department of Mathematics, Florida State University (2014)

    Google Scholar 

  38. Iannazzo, B., Porcelli, M.: The Riemannian Barzilai–Borwein method with nonmonotone line search and the matrix geometric mean computation. IMA J. Numer. Anal. 38(1), 495–517 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jeuris, B., Vandebril, R., Vandereycken, B.: A survey and comparison of contemporary algorithms for computing the matrix geometric mean. Electron. Trans. Numer. Anal. 39, 379–402 (2012)

    MathSciNet  MATH  Google Scholar 

  40. Kulis, B., Sustik, M., Dhillon, I.: Learning low-rank kernel matrices. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 505–512. ACM, New York (2006)

    Google Scholar 

  41. Kulis, B., Sustik, M.A., Dhillon, I.S.: Low-rank kernel learning with Bregman matrix divergences. J. Mach. Learn. Res. 10, 341–376 (2009)

    MathSciNet  MATH  Google Scholar 

  42. Lapuyade-Lahorgue, J., Barbaresco, F.: Radar detection using Siegel distance between autoregressive processes, application to HF and X-band radar. In: Proceedings of IEEE Radar Conference, pp. 1–6 (2008)

    Google Scholar 

  43. Lawson, J.D., Lim, Y.: The geometric mean, matrices, metrics, and more. Am. Math. Mon. 108(108), 797–812 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  44. Lawson, J., Lim, Y.: Monotonic properties of the least squares mean. Math. Ann. 351(2), 267–279 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lopuhaa, H.P., Rousseeuw, P.J.: Breakdown points of affine equivariant estimators of multivariate location and covariance matrices. Ann. Stat., 229–248 (1991)

    Google Scholar 

  46. Luigi, M., Montrucchio, L., Pistone, G.: Wasserstein riemannian geometry of Gaussian densities. Inf. Geo. 1(2), 137–179 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Massart, E., Absil, P.-A.: Quotient geometry with simple geodesics for the manifold of fixed-rank positive-semidefinite matrices. Technical Report UCL-INMA-2018.06-v2, U.C. Louvain (2018)

    Google Scholar 

  48. Massart, E.M., Hendrickx, J.M., Absil, P.-A.: Matrix geometric means based on shuffled inductive sequences. Linear Algebra Appl. 542, 334–359 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  49. Michor, P.W., Petz, D., Andai, A.: On the curvature of a certain Riemannian space of matrices. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3(02), 199–212 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  50. Moakher, M.: On the averaging of symmetric positive-definite tensors. J. Elast. 82(3), 273–296 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  51. Moakher, M., Batchelor, P.G.: Symmetric positive-definite matrices: from geometry to applications and visualization. In: Visualization and Processing of Tensor Fields, pp. 285–298. Springer, Berlin (2006)

    Google Scholar 

  52. Nesterov, Y.: Introductory lectures on convex programming volume I: Basic course. Lect. Notes 87, 236 (1998)

    Google Scholar 

  53. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, second edition (2010)

    Google Scholar 

  54. Nielsen, F., Nock, R.: Approximating smallest enclosing balls with applications to machine learning. Int. J. Comput. Geom. Appl. 19(05), 389–414 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  55. Nielsen, F., Liu, M., Ye, X., Vemuri, B.C.: Jensen divergence based SPD matrix means and applications. In: Proceedings of 21st International Conference on Pattern Recognition (ICPR), pp. 2841–2844. IEEE, Piscataway (2012)

    Google Scholar 

  56. Nielsen, F., Nock, R.: Total Jensen divergences: definition, properties and clustering. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2016–2020. IEEE, Piscataway (2015)

    Google Scholar 

  57. Ostresh Jr, L.M.: On the convergence of a class of iterative methods for solving the Weber location problem. Oper. Res. 26(4), 597–609 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  58. Pennec, X.: Statistical Computing on Manifolds: From Riemannian Geometry to Computational Anatomy, pp. 347–386. Springer, Berlin (2009)

    Google Scholar 

  59. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Comput. Vis. 66(1), 41–66 (2006)

    Article  MATH  Google Scholar 

  60. Rathi, Y., Tannenbaum, A., Michailovich, O.: Segmenting images on the tensor manifold. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)

    Google Scholar 

  61. Rentmeesters, Q.: Algorithms for data fitting on some common homogeneous spaces. Ph.D. Thesis. Universite catholiqué de Louvain (2013)

    Google Scholar 

  62. Rentmeesters, Q., Absil, P.-A.: Algorithm comparison for Karcher mean computation of rotation matrices and diffusion tensors. In: 19th European Signal Processing Conference, pp. 2229–2233 (2011)

    Google Scholar 

  63. Said, S., Bombrun, L., Berthoumieu, Y., Manton, J.H.: Riemannian Gaussian distributions on the space of symmetric positive definite matrices. IEEE Trans. Inf. Theory 63(4), 2153–2170 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  64. Sra, S.: A new metric on the manifold of kernel matrices with application to matrix geometric means. In: Advances in Neural Information Processing Systems, pp. 144–152 (2012)

    Google Scholar 

  65. Sra, S.: Positive definite matrices and the S-divergence. Proc. Am. Math. Soc. 144(7), 2787–2797 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  66. Sylvester, J.J.: A question in the geometry of situation. Q. J. Math. 1, 17 (1857)

    Google Scholar 

  67. Tsang, I.W., Kocsor, A., Kwok, J.T.: Exploration of Balanced Metrics on Symmetric Positive Definite Matrices. Geometric Science of Information, pp. 484–493. Springer, Cham

    Google Scholar 

  68. Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273–86 (2011)

    Article  Google Scholar 

  69. Vemuri, B.C., Liu, M., Amari, S.-I., Nielsen, F.: Total Bregman divergence and its applications to DTI analysis. IEEE Trans. Med. Imaging 30(2), 475–483 (2011)

    Article  Google Scholar 

  70. Wang, Z., Vemuri, B.C.: An affine invariant tensor dissimilarity measure and its applications to tensor-valued image segmentation. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, pp. I–I. IEEE, Piscataway (2004)

    Google Scholar 

  71. Weiszfeld, E.: Sur le point pour lequel la somme des distances de n points donnés est minimum. Tohoku Math. J. First Series 43, 355–386 (1937)

    MATH  Google Scholar 

  72. Welzl, E.: Smallest enclosing disks (balls and ellipsoids). In: New Results and New Trends in Computer Science (1991)

    Google Scholar 

  73. Yuan, X.: Riemannian optimization methods for averaging symmetric positive definite matrices. Ph.D. Thesis. Department of Mathematics, Florida State University (2018)

    Google Scholar 

  74. Yuan, X., Huang, W., Absil, P.-A., Gallivan, K.A.: A Riemannian limited-memory BFGS algorithm for computing the matrix geometric mean. Procedia Comput. Sci. 80, 2147–2157 (2016)

    Article  Google Scholar 

  75. Yuan, X., Huang, W., Absil, P.-A., Gallivan, K. A.: Computing the matrix geometric mean: Riemannian vs Euclidean conditioning, implementation techniques, and a Riemannian BFGS method. Technical Report UCL-INMA-2019.05, U.C. Louvain (2019). https://www.math.fsu.edu/~whuang2/papers/CMGM.htm

  76. Zhang, J.: Divergence function, duality, and convex analysis. Neural Comput. 16(1), 159–195 (2004)

    Article  MATH  Google Scholar 

  77. Zhang, T.: A majorization-minimization algorithm for computing the Karcher mean of positive definite matrices. SIAM J. Matrix Anal. Appl. 38(2), 387–400 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  78. Zhang, Z., Su, J., Klassen, E., Le, H., Srivastava, A.: Rate-invariant analysis of covariance trajectories. J. Math. Imaging Vision 60(8), 1306–1323 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yuan, X., Huang, W., Absil, PA., Gallivan, K.A. (2020). Averaging Symmetric Positive-Definite Matrices. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_20

Download citation

Publish with us

Policies and ethics

Navigation