Training Deep Learning Models via Synthetic Data: Application in Unmanned Aerial Vehicles

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2019)

Abstract

This paper describes preliminary work in the recent promising approach of generating synthetic training data for facilitating the learning procedure of deep learning (DL) models, with a focus on aerial photos produced by unmanned aerial vehicles (UAV). The general concept and methodology are described, and preliminary results are presented, based on a classification problem of fire identification in forests as well as a counting problem of estimating number of houses in urban areas. The proposed technique constitutes a new possibility for the DL community, especially related to UAV-based imagery analysis, with much potential, promising results, and unexplored ground for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Python Imaging Library. https://pypi.python.org/pypi/PIL.

  2. 2.

    OpenCV. https://pypi.python.org/pypi/opencv-python.

  3. 3.

    Open AI Tanzania Challenge. https://blog.werobotics.org/2018/08/06/welcome-to-the-open-ai-tanzania-challenge/.

  4. 4.

    Unity. https://unity.com.

References

  1. Amara, J., Bouaziz, B., Algergawy, A., et al.: A deep learning-based approach for banana leaf diseases classification. In: BTW (Workshops), pp. 79–88 (2017)

    Google Scholar 

  2. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications. ar**v preprint ar**v:1605.07678 (2016)

  3. Douarre, C., Schielein, R., Frindel, C., Gerth, S., Rousseau, D.: Deep learning based root-soil segmentation from x-ray tomography. bioRxiv, p. 071662 (2016)

    Google Scholar 

  4. Dyrmann, M., Mortensen, A.K., Midtiby, H.S., Jorgensen, R.N., et al.: Pixel-wise classification of weeds and crops in images by using a fully convolutional neural network. In: Proceedings of the International Conference on Agricultural Engineering, Aarhus, Denmark, pp. 26–29 (2016)

    Google Scholar 

  5. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4340–4349 (2016)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  7. Kamilaris, A.: Simulating training data for deep learning models. In: Machine Learning in the Environmental Sciences Workshop, in Proceedings of EnviroInfo 2018, Munich, Germany, September 2018

    Google Scholar 

  8. Kamilaris, A., Assumpcio, A., Blasi, A.B., Torrellas, M., Prenafeta-Boldú, F.X.: Estimating the environmental impact of agriculture by means of geospatial and big data analysis: the case of catalonia. In: Otjacques, B., Hitzelberger, P., Naumann, S., Wohlgemuth, V. (eds.) From Science to Society. PI, pp. 39–48. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-65687-8_4

    Chapter  Google Scholar 

  9. Kamilaris, A., Prenafeta-Boldu, F.X.: Disaster monitoring using unmanned aerial vehicles and deep learning. In: Disaster Management for Resilience and Public Safety Workshop, in Proceedings of EnviroInfo 2017, Luxembourg, September 2017

    Google Scholar 

  10. Kamilaris, A., Prenafeta-Boldu, F.X.: Deep learning in agriculture: a survey. Comput. Electron. Agric. 147, 70–90 (2018)

    Article  Google Scholar 

  11. Kar, A., et al.: Meta-sim: learning to generate synthetic datasets. ar**v preprint ar**v:1904.11621 (2019)

  12. Lehmussola, A., Ruusuvuori, P., Selinummi, J., Huttunen, H., Yli-Harja, O.: Computational framework for simulating fluorescence microscope images with cell populations. IEEE Trans. Med. Imaging 26(7), 1010–1016 (2007)

    Article  Google Scholar 

  13. Lempitsky, V., Zisserman, A.: Learning to count objects in images. In: Advances in Neural Information Processing Systems, pp. 1324–1332 (2010)

    Google Scholar 

  14. Li, P., Liang, X., Jia, D., **ng, E.P.: Semantic-aware grad-GAN for virtual-to-real urban scene adaption. ar**v preprint ar**v:1801.01726 (2018)

  15. Olah, C., et al.: The building blocks of interpretability. Distill 3(3), e10 (2018)

    Article  Google Scholar 

  16. Prakash, A., et al.: Structured domain randomization: Bridging the reality gap by context-aware synthetic data. ar**v preprint ar**v:1810.10093 (2018)

  17. Puig, X., et al.: Virtualhome: simulating household activities via programs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8494–8502 (2018)

    Google Scholar 

  18. Rahnemoonfar, M., Sheppard, C.: Deep count: fruit counting based on deep simulated learning. Sensors 17(4), 905 (2017)

    Article  Google Scholar 

  19. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  20. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The synthia dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3234–3243 (2016)

    Google Scholar 

  21. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  22. Shah, S., Dey, D., Lovett, C., Kapoor, A.: Aerial Informatics and Robotics Platform. Microsoft Research, Washigton (2017)

    Google Scholar 

  23. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

  24. Walach, E., Wolf, L.: Learning to count with CNN boosting. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 660–676. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_41

    Chapter  Google Scholar 

  25. Wu, Y., Wu, Y., Gkioxari, G., Tian, Y.: Building generalizable agents with a realistic and rich 3D environment. ar**v preprint ar**v:1801.02209 (2018)

  26. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kamilaris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kamilaris, A., van den Brink, C., Karatsiolis, S. (2019). Training Deep Learning Models via Synthetic Data: Application in Unmanned Aerial Vehicles. In: Vento, M., et al. Computer Analysis of Images and Patterns. CAIP 2019. Communications in Computer and Information Science, vol 1089. Springer, Cham. https://doi.org/10.1007/978-3-030-29930-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29930-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29929-3

  • Online ISBN: 978-3-030-29930-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation