A Review of the Effects of Throughfall and Stemflow on Soil Properties and Soil Erosion

  • Chapter
  • First Online:
Precipitation Partitioning by Vegetation

Abstract

Over a large fraction of the global landsurface, precipitation interacts with standing vegetation or organic litter prior to reaching the mineral soil. This interaction has both benefits and costs for plants, and these arise over varying timescales from minutes or hours to years or decades. A two-way interaction emerges in which the precipitation-vegetation interactions can affect plant growth, which in turn may alter the nature of the physical processes responsible for the plant-precipitation interactions via changes in plant architecture. This chapter explores two important examples of these processes. These are canopy changes in the drop size characteristics of water reaching the mineral soil, and the occurrence of contact flow or ‘stemflow’. Both may result in important hydrologic and erosional outcomes in forests, shrublands, and croplands, some of which are beneficial to plants, and some potentially detrimental. In particular, the effect of vegetation canopies in creating throughfall drops that are larger than those of open-field rainfall may result in higher sub-canopy erosivity. Likewise, the rainwater funnelling action of vegetation canopies and the resulting focussed delivery of stemflow may result in overland flow and scour of the soil surface around the base of some plants. Many of the interactions of precipitation and vegetation are conditioned by the characteristics of the open-field rainfall incident upon plant canopies; the chapter therefore also presents an overview of some of the key attributes of rainfall as they relate to processes acting on, within, and beneath vegetation. In many cases, the most important attributes of rainfall relate to the timescales characteristic of rainfall events, including event duration, depth, and intensity. These, and the nature of the vegetation and soils, exhibit wide geographical variability. This leaves many significant challenges facing the development of a full understanding of the interactions of rainfall, vegetation, and soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn S, Doerr SH, Douglas P, Bryant R, Hamlett CAE, McHale G, Newton MI, Shirtcliffe NJ (2013) Effects of hydrophobicity on splash erosion of model soil particles by a single water drop impact. Earth Surf Proc Land 38:1225–1233. https://doi.org/10.1002/esp.3364

    Article  Google Scholar 

  • Al-Durrah MM, Bradford JM (1982) The mechanism of raindrop splash on soil surfaces. Soil Sci Soc Am J 46:1086–1090

    Article  Google Scholar 

  • Andrieu C, Beysens DA, Nikolaev VS, Pomeau Y (2002) Coalescence of sessile drops. J Fluid Mech 453:427–438. https://doi.org/10.1017/S0022112001007121

    Article  Google Scholar 

  • Bako AN, Darboux F, James F, Josserand C, Lucas C (2016) Pressure and shear stress caused by raindrop impact at the soil surface: Scaling laws depending on the water depth. Earth Surf Proc Landf 41:1199–1210. https://doi.org/10.1002/esp.3894

  • Barros AP, Prat OP, Testik FY (2010) Size distribution of raindrops. Nat Phys 6:232

    Google Scholar 

  • Beczek M, Ryzak M, Lamorski K, Sochan A, Mazur R, Bieganowski A (2018) Application of X-ray computed microtomography to soil craters formed by raindrop splash. Geomorphology 303:357–361. https://doi.org/10.1016/j.geomorph.2017.12.019

    Article  Google Scholar 

  • Berry EX, Pranger MR (1974) Equations for calculating the terminal velocities of water drops. J Appl Meteorol 13:108–113

    Article  Google Scholar 

  • Best AC (1950) Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Q J R Meteorol Soc 76:302–311

    Article  Google Scholar 

  • Bialkowski R, Buttle JM (2015) Stemflow and throughfall contributions to soil water recharge under trees with differing branch architectures. Hydrol Process 29:4068–4082. https://doi.org/10.1002/hyp.10463

    Article  Google Scholar 

  • Blocken B, Poesen J, Carmeliet J (2006) Impact of wind on the spatial distribution of rain over micro-scale topography: numerical modelling and experimental verification. Hydrol Process 20:345–368. https://doi.org/10.1002/hyp.5865

    Article  Google Scholar 

  • Bollen WB, Chen CS, Lu KC, Tarrant RF (1968) Effect of stemflow precipitation on chemical and microbiological soil properties beneath a single alder tree. In: Biology of alder, proceedings of northwest forest scientific association annual meeting, 14–15 April 1967, pp 149–156

    Google Scholar 

  • Brandt J (1998) The transformation of rainfall energy by a tropical rain forest canopy in relation to soil erosion. J Biogeogr 15:41–48

    Article  Google Scholar 

  • Bruijnzeel LA, Mulligan M, Scatena FN (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol Process 25:465–498. https://doi.org/10.1002/hyp.7974

    Article  Google Scholar 

  • Bui EN, Box JE (1992) Stemflow, rain throughfall, and erosion under canopies of corn and sorghum. Soil Sci Soc Am J 56:242–247

    Article  Google Scholar 

  • Burzynski DA, Bansmer SE (2018) Droplet splashing on thin moving films at high Weber numbers. Int J Multiph Flow 101:202–211. https://doi.org/10.1016/j.ijmultiphaseflow.2018.01.015

    Article  Google Scholar 

  • Buttle JM, Toye HJ, Greenwood WJ, Bialkowski R (2014) Stemflow and soil water recharge during rainfall in a red pine chronosequence on the Oak Ridges Moraine, southern Ontario, Canada. J Hydrol 517:777–790. https://doi.org/10.1016/j.jhydrol.2014.06.014

    Article  Google Scholar 

  • Caracciolo C, Porcu F, Prodi F (2008) Precipitation classification at mid-latitudes in terms of drop size distribution parameters. Adv Geosci 16:11–17

    Article  Google Scholar 

  • Carson MA, Kirkby MJ (1972) Hillslope form and process. Cambridge University Press, London, p 475

    Google Scholar 

  • Chang SC, Matzner E (2000) The effect of beech stemflow on spatial patterns of soil solution chemistry and seepage fluxes in a mixed beech/oak stand. Hydrol Process 14:135–144

    Article  Google Scholar 

  • Chiang CY, Yang TY, Casandra A, Lin SY (2017) A study of the splash phenomenon of water drops on wood—emitted droplet velocity and kinetic energy. Exp Therm Fluid Sci 88:444–449. http://dx.doi.org/10.1016/j.expthermflusci.2017.06.019

  • Chinen T (2007) An observation of surface runoff and erosion caused by Acacia albida stemflow in dry savanna in the south-western Republic of Niger. Geogr Rep Tokyo Metrop Univ 42:21–30

    Google Scholar 

  • Corti G, Agnelli A, Cocco S, Cardelli V, Masse J, Courchesne F (2019) Soil affects throughfall and stemflow under Turkey oak (Quercus cerris L.). Geoderma 333:45–56. https://doi.org/10.1016/j.geoderma.2018.07.010

  • Cossali GE, Coghe A, Marengo M (1997) The impact of a single drop on a wetted solid surface. Exp Fluids 22:463–472

    Article  Google Scholar 

  • Cronan CS (2018) Ecosystem biogeochemistry. Element cycling in the forest landscape. Springer, Berlin, 202 pp

    Google Scholar 

  • Crozier CR, Boerner EJ (1986) Stemflow induced soil nutrient heterogeneity in a mixed mesophytic forest. Bartonia 52:1–8

    Google Scholar 

  • Cárdenas MF, Tobón C, Buytaert W (2017) Contribution of occult precipitation to the water balance of páramo ecosystems in the Colombian Andes. Hydrol Process 31:4440–4449. https://doi.org/10.1002/hyp.11374

    Article  Google Scholar 

  • Dawson TE, Goldsmith GR (2018) Tansley review: the value of wet leaves. New Phytol 219:1156–1169. https://doi.org/10.1111/nph.15307

    Article  Google Scholar 

  • Dean JM, Smith AP (1978) Behavioural and morphological adaptations of a tropical plant to high rainfall. Biotropica 10:152–154

    Article  Google Scholar 

  • Dietz J, Hölscher D, Leuschner C, Hendrayanto (2006) Rainfall partitioning in relation to forest structure in differently managed montane forest stands in central Sulawesi, Indonesia. For Ecol Manag 237:170–178

    Google Scholar 

  • Domínguez CG, Vera MFG, Chaumont C, Tournebize J, Villacís M, d’Ozouville N, Violette S (2016) Quantification of cloud water interception in the canopy vegetation from fog gauge measurements. Hydrol Process 31:3191–3205. https://doi.org/10.1002/hyp.11228

    Article  Google Scholar 

  • Dunkerley DL (2008) Rain event properties in nature and in rainfall simulation experiments: a comparative review with recommendations for increasingly systematic study and reporting. Hydrol Process 22:4415–4435. https://doi.org/10.1002/hyp.7045

    Article  Google Scholar 

  • Dunkerley DL (2013) Sub-daily rainfall events in an arid environment with marked climate variability: variation among wet and dry years at Fowlers Gap, New South Wales, Australia. J Arid Environ 96:23–30. https://doi.org/10.1016/j.jaridenv.2013.04.002

    Article  Google Scholar 

  • Dunkerley DL (2011) Desert soils. In: Thomas DSG (eds) Arid zone geomorphology: process, form, and change in drylands, Chapter 7, pp 101–129. Wiley, 624 pp

    Google Scholar 

  • D’Odorico P, Yoo JC, Over TM (2001) An assessment of ENSO-Induced patterns of rainfall erosivity in the southwestern United States. J Clim 14:4230–4242

    Article  Google Scholar 

  • Ekerete KME, Hunt FH, Jeffery JL, Otung IE (2015) Modeling rainfall drop size distribution in southern England using a Gaussian Mixture Model. Radio Sci 50:876–885. https://doi.org/10.1002/2015RS005674

    Article  Google Scholar 

  • Engel OG (1955) Waterdrop collisions with solid surfaces. J Res Nat Bur Stand 281–298. Research paper 2591

    Google Scholar 

  • Fernández-Raga M, Palencia C, Keesstra S, Jordán A, Fraile R, Angulo-Martínez M, Cerda A (2017) Splash erosion: a review with unanswered questions. Earth Sci Rev 171:463–477. https://doi.org/10.1016/j.earscirev.2017.06.009

    Article  Google Scholar 

  • Friedrich K, Kalina EA, Aikins J, Steiner M, Gochis D, Kucera PA, Ikeda K, Sun J (2016) Raindrop size distribution and rain characteristics during the 2013 Great Colorado Flood. J Hydrometeorol 17:53–72. https://doi.org/10.1175/JHM-D-14-0184.1

    Article  Google Scholar 

  • Fu Y, Li G, Zheng T, Li B, Zhang T (2016) Impact of raindrop characteristics on the selective detachment and transport of aggregate fragments in the Loess Plateau of China. Soil Sci Soc Am J 80:1071–1077. https://doi.org/10.2136/sssaj2016.03.0084

    Article  Google Scholar 

  • Furbish DJ, Childs EM, Haff PK, Schmeeckle MW (2009) Rain splash of soil grains as a stochastic advection-dispersion process, with implications for desert plant-soil interactions and land-surface evolution. J Geophys Res 114:F00A03. https://doi.org/10.1029/2009JF001265

  • Ganatsios HP, Tsioras PA, Pavlidis T (2010) Water yield changes as a result of silvicultural treatments in an oak ecosystem. For Ecol Manag 260:1367–1374. https://doi.org/10.1016/j.foreco.2010.07.033

    Article  Google Scholar 

  • Gatlin PN, Thurai M, Bringi VN, Petersen W, Wolff D, Tokay A, Carey L, Wingo M (2015) Searching for large raindrops: a global summary of two-dimensional video disdrometer observations. J Appl Meteorol Climatol 54:1069–1089. https://doi.org/10.1175/JAMC-D-14-0089.1

    Article  Google Scholar 

  • Geissler C, Kühn P, Böhnke M, Bruelheide H, Shi X, Scholten T (2012) Splash erosion potential under tree canopies in subtropical SE China. Catena 91:85–93. https://doi.org/10.1016/j.catena.2010.10.009

    Article  Google Scholar 

  • Geissler C, Kühn P, Shi X, Scholten T (2010) Estimation of throughfall erosivity in a highly diverse forest ecosystem using sand-filled splash cups. J Earth Sci 21:879–900. https://doi.org/10.1007/s12583-010-0132-y

    Article  Google Scholar 

  • Gerlein-Safdi C, Koohafkan MC, Chung M, Rockwell FE, Thompson S, Caylor KK (2018) Dew deposition suppresses transpiration and carbon uptake in leaves. Agric For Meteorol 259:305–316. https://doi.org/10.1016/j.agrformet.2018.05.015

    Article  Google Scholar 

  • Gersper PL, Holowaychuk N (1970) Effects of stemflow water on a Miami soil under a beech tree: I. morphological and physical properties. Soil Sci Soc Am Proc 34:779–786

    Article  Google Scholar 

  • Gersper PL, Holowaychuk N (1971) Some effects of stem flow from forest canopy trees on chemical properties of soils. Ecology 52:691–702

    Article  Google Scholar 

  • Goebes P, Bruelheide H, Härdtle W, Kröber W, Kühn P, Li Y, Seitz S, von Oheimb G, Scholten T (2015) Species-specific effects on throughfall kinetic energy in subtropical forest plantations are related to leaf traits and tree architecture. PLoS ONE 10:e0128084. https://doi.org/10.1371/journal.pone.0128084

    Article  Google Scholar 

  • Goebes P, Seitz S, Geissler C, Lassu T, Peters P, Seeger M, Nadrowski K, Scholten T (2014) Momentum or kinetic energy—how do substrate properties influence the calculation of rainfall erosivity? J Hydrol 517:310–316. https://doi.org/10.1016/j.jhydrol.2014.05.031

    Article  Google Scholar 

  • Goldsmith GR, Bentley LP, Shenkin A, Salinas N, Blonder B, Martin RE, Castro-Ccossco R, Chambi-Porroa P, Diaz S, Enquist BJ, Asner GP, Malhi Y (2017) Variation in leaf wettability traits along a tropical montane elevation gradient. New Phytol 214:989–1001. https://doi.org/10.1111/nph.14121

    Article  Google Scholar 

  • Gomez JA, Vanderlinden K, Giráldez JV, Fereres E (2002) Rainfall concentration under olive trees. Agric Water Manag 55:53–70

    Article  Google Scholar 

  • Gomez-Peralta D, Oberbauer SF, McClain ME, Philippi TE (2008) Rainfall and cloud-water interception in tropical montane forests in the eastern Andes of Central Peru. For Ecol Manag 255:1315–1325

    Article  Google Scholar 

  • Gras EK, Read J, Mach CT, Sanson GD, Clissold FJ (2005) Herbivore damage, resource richness and putative defences in juvenile versus adult Eucalyptus leaves. Aust J Bot 53:33–44

    Article  Google Scholar 

  • Gunn R, Kinzer GD (1949) The terminal velocity of fall for water droplets in stagnant air. J Meteorol 6:243–248

    Article  Google Scholar 

  • Hakimi L, Sadeghi SMM, Van Stan JT, Pypker TG, Khosropour E (2018) Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agr Ecosyst Environ 259:77–85. https://doi.org/10.1016/j.agee.2018.03.001

    Article  Google Scholar 

  • Hall RL, Calder IR (1993) Drop size modification by forest canopies: measurements using a disdrometer. J Geophys Res 98:18465–18470

    Article  Google Scholar 

  • Harlow FH, Shannon JP (1967) The splash of a liquid drop. J Appl Phys 38:3855–3866

    Article  Google Scholar 

  • Harr RD (1982) Fog drip in the Bull Run municipal watershed, Oregon. Water Resour Bull 18:785–789

    Google Scholar 

  • Hartley DM, Alonso CV (1991) Numerical study of the maximum boundary shear stress induced by raindrop impact. Water Resour Res 27:1819–1826

    Article  Google Scholar 

  • Herwitz SR (1986) Infiltration-excess caused by stemflow in a cyclone-prone tropical rainforest. Earth Surf Proc Land 11:401–412

    Article  Google Scholar 

  • Herwitz SR (1987) Raindrop impact and water flow on the vegetative surfaces of trees and the effects on stemflow and throughfall generation. Earth Surf Proc Land 12:425–432

    Article  Google Scholar 

  • Hobbs PV, Osheroff T (1967) Splashing of drops on shallow liquids. Science 158:1184–1186

    Article  Google Scholar 

  • Hobbs PV, Rangno AL (2004) Super-large raindrops. Geophys Res Lett 31:L13102. https://doi.org/10.1029/2004GL020167

    Article  Google Scholar 

  • Hoffman O. Yizhaq H, Boeken BR (2013) Small-scale effects of annual and woody vegetation on sediment displacement under field conditions. Catena 109:157–163. http://dx.doi.org/10.1016/j.catena.2013.04.003

  • Van Hooff P (1983) Earthworm activity as a cause of splash erosion in a Luxembourg forest. Geoderma 31:195–204

    Article  Google Scholar 

  • Hu F, Liu J, Xu C, Du W, Yang Z, Liu X, Liu G, Zhao S (2018) Soil internal forces contribute more than raindrop impact force to rainfall splash erosion. Geoderma 330:91–98. https://doi.org/10.1016/j.geoderma.2018.05.031

    Article  Google Scholar 

  • Huang C, Bradford JM, Cushman JH (1982) A numerical study of raindrop impact phenomena: the rigid case. Soil Sci Soc Am J 46:14–19

    Article  Google Scholar 

  • Hutley LB, Doley D, Yates DJ, Boonsaner A (1997) Water balance of an Australian subtropical rainforest at altitude: the ecological and physiological significance of intercepted cloud and fog. Aust J Bot 45:311–329

    Article  Google Scholar 

  • Hörmann G, Branding A, Clemen T, Herbst M, Hinrichs A, Thamm F (1996) Calculation and simulation of wind controlled canopy interception of a beech forest in northern Germany. Agric For Meteorol 79:131–148

    Google Scholar 

  • Iida S, Kakubari J, Tanaka T (2005) “Litter marks” indicating infiltration area of stemflow-induced water. Tsukuba Geoenviron Sci 1:27–31

    Google Scholar 

  • Ivey CT, DeSilva N (2001) A test of the function of drip tips. Biotropica 31:188–191

    Article  Google Scholar 

  • Jian S, Zhang X, Li D, Wang D, Wu Z, Hu C (2018) The effects of stemflow on redistributing precipitation and infiltration around shrubs. J Hydrol Hydromech 66:79–86. https://doi.org/10.1515/johh-2017-0043

    Article  Google Scholar 

  • Jian S, Zhao CY, Fang SM, Yu K (2014) Characteristics of Caragana korshinskii and Hippophae rhamnoides stemflow and their significance in soil moisture enhancement in Loess Plateau, China. J Arid Land 6:105–116. https://doi.org/10.1007/s40333-013-0189-4

    Article  Google Scholar 

  • Joss JJ, Waldvogel A (1969) Raindrop size distribution and sampling errors. J Atmos Sci 26:566–569

    Article  Google Scholar 

  • Keen B, Cox J, Morris S, Dalby T (2010) Stemflow runoff contributes to soil erosion at the base of macadamia trees. In: Proceedings of 19th world congress of soil science, soil solutions for a changing world, 1–6 Aug 2010, Brisbane, Australia, pp 240–243

    Google Scholar 

  • Kelkar VN (1961) Size distribution of raindrops. Nature 192:252

    Article  Google Scholar 

  • Kelkar VN (1945) Size of raindrops. In: Proceedings of the Indian academy of science, A22

    Google Scholar 

  • Kinnell PIA (1983) The effect of kinetic energy of excess rainfall on soil loss from non-vegetated plots. Aust J Soil Res 21:445–453

    Article  Google Scholar 

  • Kinnell PIA (2005) Raindrop-impact-induced erosion processes and prediction: a review. Hydrol Process 19:2815–2844

    Article  Google Scholar 

  • Kinnell PIA (2012) Raindrop-induced saltation and the enrichment of sediment discharged from sheet and interrill erosion areas. Hydrol Process 26:1449–1456. https://doi.org/10.1002/hyp.8270

    Article  Google Scholar 

  • Koch K, Grichnik R (2016) Influence of surface structure and chemistry on water droplet splashing. Philos Trans R Soc A 374:20160183. https://doi.org/10.1098/rsta.2016.0183

    Article  Google Scholar 

  • Koichiro K, Yuri T, Nobuaki T, Isamu K (2001) Generation of stemflow volume and chemistry in a mature Japanese cypress forest. Hydrol Process 15:1967–1978. https://doi.org/10.1002/hyp.250

    Article  Google Scholar 

  • Konwar M, Sarma DK, Das J, Sharma S (2006) Shape of the rain drop size distributions and classification of rain type at Gadanki. Indian J Radio Space Phys 35:360–367

    Google Scholar 

  • Koslowski TT, Pallardy SG. 1997. Physiology of woody plants. Elsevier, 2nd edition, 411 pp

    Google Scholar 

  • Kostinski AB, Shaw RA (2009) Raindrops large and small. Nat Phys 5:624–625

    Google Scholar 

  • Langkamp PJ, Farnell GK, Dalling MJ (1982) Nutrient cycling in a stand of Acacia holosericea A. Cunn. Ex G. Don. 1. Measurements of precipitation interception, seasonal acetylene reduction, plant growth and nitrogen requirement. Aust J Bot 30:87–106

    Article  Google Scholar 

  • Larsen ML, Kostinski AB, Jameson AR (2014) Further evidence for superterminal raindrops. Geophys Res Lett 41:6914–6918. https://doi.org/10.1002/2014GL061397

    Article  Google Scholar 

  • Lee JA (1986) Origin of Mounds under Creosote Bush (Larrea tridentata) on Terraces of the Salt River, Arizona. J Arizona-Nevada Acad Sci 21:23–28

    Google Scholar 

  • Legout A, van der Heijden G, Jaffrain J, Boudot J-P, Ranger J (2016) Tree species effects on solution chemistry and major element fluxes: a case study in the Morvan (Breuil, France). For Ecol Manage 378:244–258. https://doi.org/10.1016/j.foreco.2016.07.003

    Article  Google Scholar 

  • Legout C, Leguédois S, Le Bissonnais Y, Issa OM (1995) Splash distance and size distributions for various soils. Geoderma 124:279–292. https://doi.org/10.1016/j.geoderma.2004.05.006

    Article  Google Scholar 

  • Leguédois S, Planchon O, Legout C, Le Bissonnais Y (2005) Splash projection distance for aggregated soils: theory and experiment. Soil Sci Soc Am J 69:30–37

    Article  Google Scholar 

  • Levia DF, Frost EE (2003) A review and evaluation of stemflow literature in the hydrologic and biogeochemical cycles of forested and agricultural ecosystems. J Hydrol 274:1–29

    Article  Google Scholar 

  • Levia DF, Herwitz SR (2002) Winter chemical leaching from deciduous tree branches as a function of branch inclination angle in central Massachusetts. Hydrol Process 16:2867–2879. https://doi.org/10.1002/hyp.1077

    Article  Google Scholar 

  • Levia DF, Herwitz SR (2005) Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils. Catena 64:117–137

    Article  Google Scholar 

  • Levia DF, Hudson SA, Llorens P, Nanko K (2017) Throughfall drop size distributions: a review and prospectus for future research. WIREs Water 4:e1225. https://doi.org/10.1002/wat2.1225

  • Levia DF, Carlyle-Moses D, Tanaka T (eds) (2011) Forest hydrology and biogeochemistry. Ecological studies, vol 216. Springer, Dordrecht, 739 pp

    Google Scholar 

  • Li XY, Liu LY, Gao SY, Ma YJ, Yang ZP (2008) Stemflow in three shrubs and its effect on soil water enhancement in semiarid loess region of China. Agric For Meteorol 148:1501–1507. https://doi.org/10.1016/j.agrformet.2008.05.003

    Article  Google Scholar 

  • Li XY, Yang ZP, Li YT, Lin H (2009) Connecting ecohydrology and hydropedology in desert shrubs: stemflow as a source of preferential flow in soils. Hydrol Earth Syst Sci 13:1133–1144

    Article  Google Scholar 

  • Li H, Ma Y, Liu W, Liu W (2012) Soil changes induced by rubber and tea plantation establishment: comparison with tropical rain forest soil in **shuangbanna, SW China. Environ Manag. https://doi.org/10.1007/s00267-012-9942-2

  • Liang WL, Kosuhi K, Mizuyama T (2010) The effect of saturated zones induced by stemflow on slope stability. J Jpn Soc Eros Control Eng 63:22–30

    Google Scholar 

  • Liang WL, Kosuhi K, Mizuyama T (2011) Soil water dynamics around a tree on a hillslope with or without rainwater supplied by stemflow. Water Resour Res 47. https://doi.org/10.1029/2010wr009856

  • Lightbody JP (1985) Distribution of leaf shapes of Piper sp. in a tropical cloud forest: evidence for the role of drip-tips. Biotropica 17:339–342

    Article  Google Scholar 

  • Likens GE (2013) Biogeochemistry of a forested ecosystem, 3rd edn. Springer, Berlin, 208 pp

    Google Scholar 

  • Link TE, Unsworth M, Marks D (2004) The dynamics of rainfall interception by a seasonal temperate rainforest. Agric For Meteorol 124:171–191. http://dx.doi.org/10.1016/j.agrformet.2004.01.010

  • Liu W, Zhu C, Wu J, Chen C (2016) Are rubber-based agroforestry systems effective in controlling rain splash erosion? Catena 147:16–24. https://doi.org/10.1016/j.catena.2016.06.034

    Article  Google Scholar 

  • Low TB, List R (1982) Collision, coalescence and breakup of raindrops. Part 1. Experimentally established coalescence efficiencies and fragment size distributions in breakup. J Atmos Sci 39:1591–1606

    Article  Google Scholar 

  • Ma T, Zhou C, Zhu T, Cai Q (2008) Modelling raindrop impact and splash erosion processes within a spatial cell: a stochastic approach. Earth Surf Proc Land 33:712–723. https://doi.org/10.1002/esp.1570

    Article  Google Scholar 

  • Le Maitre DC, Scott DF, Colvin C (1999) A review of information on interactions between vegetation and groundwater. Water SA 25:137–152

    Google Scholar 

  • Malhado ACM, Malhi Y, Whittaker RJ, Ladle RJ, ter Steege H, Fabré NN, Phillips O, Laurance WF, Aragao LEOC, Pitman NCA, Ramírez-Angulo H, Malhado CHM (2012) Drip-tips are associated with intensity of precipitation in the Amazon rain forest. Biotropica 44:728–737. https://doi.org/10.1111/j.1744-7429.2012.00868.x

    Article  Google Scholar 

  • Marshall JS, Palmer WM (1948) The distribution of raindrops with size. J Meteorol 5:165–166

    Google Scholar 

  • Martello M, Dal Ferro N, Bortolini L, Morari F (2015) Effect of incident rainfall redistribution by Maize canopy on soil moisture at the crop row scale. Water 7:2254–2271. https://doi.org/10.3390/w7052254

    Article  Google Scholar 

  • May FE, Ash JE (1990) An assessment of the allelopathic potential of Eucalyptus. Aust J Bot 38:245–254

    Article  Google Scholar 

  • Mazon J, Viñas S (2013) A low-cost experiment for determining raindrop size distribution. Weather 68:49–52. https://doi.org/10.1002/wea.2064

    Article  Google Scholar 

  • McDonald JE (1954) The shape and aerodynamics of large raindrops. J Meteorol 11:478–494

    Article  Google Scholar 

  • McJannet D, Wallace J, Fitch P, Disher M, Reddell P (2007) Water balance of tropical rainforest canopies in north Queensland, Australia. Hydrol Process 21:3473–3484. https://doi.org/10.1002/hyp.6618

    Article  Google Scholar 

  • Metzger JC, Wutzler T, Dalla Valle N, Filipzik J, Grauer C, Lehmann R, Roggenbuck M, Schelhorn D, Weckmüller J, Küsel K, Totsche KU, Trumbore S, Hildebrandt A (2017) Vegetation impacts soil water content patterns by sha** canopy water fluxes and soil properties. Hydrol Process 31:3783–3795. https://doi.org/10.1002/hyp.11274

    Article  Google Scholar 

  • Mihara Y (1952) Raindrops and soil erosion. Bull no 1 Nat Inst Agric Sci, Tokyo 52 pp

    Google Scholar 

  • Miura S, Hirai K, Yamada T (2002) Transport rates of surface materials on steep forested slopes induced by raindrop splash erosion. J For Res 7:201–211

    Article  Google Scholar 

  • Miura S, Yoshinaga S, Yamada T (2003) Protective effect of floor cover against soil erosion on steep slopes forested with Chamaecyparis obtusa (hinoki) and other species. J For Res 8:27–35

    Article  Google Scholar 

  • Mizugaki S, Nanko K, Onda Y (2010) The effect of slope angle on splash detachment in an unmanaged Japanese cypress plantation forest. Hydrol Process 24:576–587. https://doi.org/10.1002/hyp.7552

    Article  Google Scholar 

  • Molina AJ, del Campo AD (2012) The effects of experimental thinning on throughfall and stemflow: A contribution towards hydrology-oriented silviculture in Aleppo pine plantations. For Ecol Manag 269:206–213. https://doi.org/10.1016/j.foreco.2011.12.037

    Article  Google Scholar 

  • Del Moral R, Muller CH (1969) Fog drip: a mechanism of toxin transport from Eucalyptus globulus. Bull Torrey Bot Club 96:467–475

    Article  Google Scholar 

  • Moss AJ, Green P (1987) Erosive effects of the large water drops (gravity drops) that fall from plants. Aust J Soil Res 25:9–20

    Article  Google Scholar 

  • Mouzai L, Bouhadef M (2011) Shear strength of compacted soil: effects on splash erosion by single water drops. Earth Surf Proc Landf 36:87–96. http://dx.doi.org/10.1002/esp.2021

  • Mutchler CK (1971) Splash droplet production by waterdrop impact. Water Resour Res 7:1024–1030

    Article  Google Scholar 

  • Mutchler CK, Hansen LM (1970) Splash of a waterdrop at terminal velocity. Science 169:1311–1312

    Article  Google Scholar 

  • Mutchler CK, Larson CL (1971) Splash amounts from waterdrop impact on a smooth surface. Water Resour Res 7:195–200

    Article  Google Scholar 

  • Nanko K, Hotta N, Suzuki M (2004) Assessing raindrop impact energy at the forest floor in a mature Japanese cypress plantation using continuous raindrop-sizing instruments. J For Res 9:157–164. https://doi.org/10.1007/s10310-003-0067-6

    Article  Google Scholar 

  • Nanko K, Hudson SA, Levia DF (2016) Differences in throughfall drop size distributions in the presence and absence of foliage. Hydrol Sci J 61:620–627. https://doi.org/10.1080/02626667.2015.1052454

    Article  Google Scholar 

  • Nanko K, Mizugaki S, Onda Y (2008) Estimation of soil splash detachment rates on the forest floor of an unmanaged Japanese cypress plantation based on field measurements of throughfall drop sizes and velocities. Catena 72:348–361. https://doi.org/10.1016/j.catena.2007.07.002

    Article  Google Scholar 

  • Nanko K, Watanabe A, Hotta N, Suzuki M (2013) Physical interpretation of the difference in drop size distributions of leaf drips among tree species. Agric For Meteorol 169:74–84. https://doi.org/10.1016/j.agrformet.2012.09.018

    Article  Google Scholar 

  • Nanko K, Hotta N, Suzuki M (2006) Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. J Hydrol 329:422–431. http://dx.doi.org/10.1016/j.jhydrol.2006.02.036

  • Nearing MA, Bradford JM (1985) Single waterdrop splash detachment and mechanical properties of soils. Soil Sci Soc Am J 49:547–552

    Article  Google Scholar 

  • Noble CA, Morgan RPC (1983) Rainfall interception and splash detachment with a Brussles sprouts plant: a laboratory simulation. Earth Surf Proc Land 8:569–577

    Article  Google Scholar 

  • Okoba BO, Sterk G (2006) Quantification of visual soil erosion indicators in Gikuuri catchment in the central highlands of Kenya. Geoderma 134:34–47. https://doi.org/10.1016/j.geoderma.2005.08.013

    Article  Google Scholar 

  • Paul PA, El-Allaf SM, Lipps PE, Madden LV (2004) Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology 94:1342–1349

    Article  Google Scholar 

  • Pawlik L, Kasprzak M (2018) Regolith properties under trees and the biomechanical effects caused by tree root systems as recognized by electrical resistivity tomography (ERT). Geomorphology 300:1–12. https://doi.org/10.1016/j.geomorph.2017.10.002

  • Porada P, Van Stan JT, Kleidon A (2018) Significant contribution of non-vascular vegetation to global rainfall interception. Nature Geosci 11:563–567. https://doi.org/10.1038/s45461-018-0176-7

  • Prebble RE (1987) Studies in landscape dynamics in the Cooloola-Noosa River area, Queensland. 6. Stemflow, surface flow and sand movement on a coastal dune. CSIRO Division of Soils, Divisional Report No. 90, 15 pp

    Google Scholar 

  • Pressland AJ (1973) Rainfall partitioning by an arid woodland (Acacia aneura F. Muell.) in south-western Queensland. Aust J Bot 21:235–245

    Article  Google Scholar 

  • Pressland AJ (1976) Soil moisture redistribution as affected by throughfall and stemflow in an arid zone shrub community. Aust J Bot 24:641–649

    Article  Google Scholar 

  • Pruppacher HR, Klett JD (1997) Microphysics of clouds and precipitation. Kluwer, Dorderecht, p 954

    Google Scholar 

  • Pérez-Díaz JL, Ivanov I, Peshev Z, Álvarez-Valenzuela MA, Valiente-Blanco I, Evgenieva T, Dreischuh T, Gueorgulev O, Todorov PV, Vaseashta A (2017) Fogs: physical basis, characteristic properties, and impacts on the environment and human health. Water 9:807. https://doi.org/10.3390/w9100807

    Article  Google Scholar 

  • Quets JJ, El-Bana LI, Al-Rowaily SL, Asaeed AM, Temmerman S, Nijs I (2016) A mechanism of self-organization in a desert with phytogenic mounds. Ecosphere 7:e01494

    Article  Google Scholar 

  • Rashid NSA, Askari M (2014) “Litter marks” around oil palm tree base indicating infiltration area of stemflow-induced water. In: National seminar on civil engineering research, 14–15 April 2014, Johor Bahru, Malaysia

    Google Scholar 

  • Rebelo CF, Williamson GB (1996) Driptips vis-à-vis soil types in central Amazonia. Biotropica 28:159–163

    Article  Google Scholar 

  • Reynolds KM, Madden LV, Reichard DL, Ellis MA (1987) Methods for study of raindrop impact on plant surfaces with application to predicting inoculum dispersal by rain. Phytophathology 77:226–232

    Article  Google Scholar 

  • Rigg LS, Enright NJ, Perry GLW, Miller BP (2002) The role of cloud combing and shading by isolated trees in the succession from Maquis to rain forest in New Caledonia. Biotropica 34:199–210

    Google Scholar 

  • Roisman IV, Lembach A, Tropea C (2015) Drop splashing induced by target roughness and porosity: the size plays no role. Adv Colloid Interface Sci 222:615–621. https://doi.org/10.1016/j.cis.2015.02.004

    Article  Google Scholar 

  • Rosewell CJ (1986) Rainfall kinetic energy in eastern Australia. J Climate Appl Meteorol 25:1695–1701

    Article  Google Scholar 

  • Rostagno CM, del Valle HF (1988) Mounds associated with shrubs in aridic soils of northeastern Patagonia: characteristics and probable genesis. Catena 15:347–359

    Google Scholar 

  • Ruxton BP (1967) Slopewash under mature primary rainforest in northern Papua. In: Jennings JN, Mabbutt JA (eds) Landform studies from Australia and New Guinea, Chapter 5, pp 85–94. Canberra: ANU Press, 434 pp

    Google Scholar 

  • Sawaske SR, Freyberg DL (2015) Fog, fog drip, and streamflow in the Santa Cruz Mountains of the California Coast Range. Ecohydrology 8:695–713. https://doi.org/10.1002/eco.1537

    Article  Google Scholar 

  • Schooling JT, Levia DF, Carlyle-Moses DE, Dowtin AL, Brewer SE, Donkor KKm Borden SA, Gryzbowski AA (2017) Stemflow chemistry in relation to tree size: a preliminary investigation of eleven urban park trees in British Columbia, Canada. Urban For Urban Green 21:129–133. http://dx.doi.org/10.1016/j.ufug.2016.11.013

  • Schroeer K, Kirchengast G (2017) Sensitivity of extreme precipitation to temperature: the variability of scaling factors from a regional to local perspective. Clim Dyn. https://doi.org/10.1007/s00382-017-3857-9

    Article  Google Scholar 

  • Schroth G, Elias MEA, Uguen K, Seixas R, Zech W (2001) Nutrient fluxes in rainfall, throughfall and stemflow in tree-based land use systems and spontaneous tree vegetation of central Amazonia. Agr Ecosyst Environ 87:37–49

    Article  Google Scholar 

  • Sharma PP, Gupta SC (1989) Sand detachment by single raindrops of varying kinetic energy and momentum. Soil Sci Soc Am J 53:1005–1010

    Article  Google Scholar 

  • Sharma PP, Gupta SC, Rawls WJ (1991) Soil detachment by single raindrops of varying kinetic energy. Soil Sci Soc Am J 55:301–307

    Article  Google Scholar 

  • Shin SS, Park SD, Choi BK (2016) Universal power law for relationship between rainfall kinetic energy and rainfall intensity. Adv Meteorol. Article ID 2494681. http://dx.doi.org/10.1155/2016/2494681

  • Shinohara Y, Ichinose K, Morimoto M, Kubota T, Nanko K (2018) Factors influencing the erosivity indices of raindrops in Japanese cypress plantations. Catena 171:54–61. https://doi.org/10.1016/j.catena.2018.06.030

    Article  Google Scholar 

  • Shure DJ, Lewis AJ (1973) Dew formation and stem flow on common ragweed (Ambrosia artermisiifolia). Ecology 54:1152–1155

    Article  Google Scholar 

  • Slatyer RO (1959) Methodology of water balance study conducted on a desert woodland (Acacia aneura F. Muell.) community in central Australia. UNESCO: Madrid symposium paper no. 13

    Google Scholar 

  • Song Z, Seitz S, Zhu P, Goebes P, Shi X, Xu S, Wang M, Schmidt K, Scholten T (2018) Spatial distribution of LAI and its relationship with throughfall kinetic energy of common tree species in a Chinese subtropical forest plantation. For Ecol Manag 425:189–195. https://doi.org/10.1016/j.foreco.2018.05.046

    Article  Google Scholar 

  • Soulsby C, Reynolds B (1994) The chemistry of throughfall, stemflow and soil water beneath Oak woodland and moorland vegetation in upland Wales. Chem Ecol 9:115–134. https://doi.org/10.1080/02757549408038569

    Article  Google Scholar 

  • Specht RL (1957) Dark Island heath, Ninety-mile Plain, South Australia. Aust J Bot 5:137–150

    Article  Google Scholar 

  • Swaffer BA, Holland KL, Doody TM, Hutson J (2014) Rainfall partitioning, tree form and measurement scale: a comparison of two co-occurring, morphologically distinct tree species in a semi-arid environment. Ecohydrology 7:1331–1334. https://doi.org/10.1002/eco.1461

    Article  Google Scholar 

  • Takagi M, Sasaki S, Gyokusen K, Saito A (1997) Stemflow chemistry of urban street trees. Environ Pollut 96:107–109

    Article  Google Scholar 

  • Tanaka N, Levia D, Igarashi Y, Yoshifuji N, Tanaka K, Tantasirin C, Nanko K, Suzuki M, Kumagai T (2017) What factors are most influential in governing stemflow production from plantation-grown teak trees? J Hydrol 544:10–20

    Article  Google Scholar 

  • Tanaka T, Taniguchi M, Tsujimura M (1996) Significance of stemflow in groundwater recharge. 2: a cylindrical infiltration model for evaluating the stemflow contribution to groundwater recharge. Hydrol Process 10:81–88

    Article  Google Scholar 

  • Taniguchi M, Tsujimura M, Tanaka T (1996) Significance of stemflow in groundwater recharge. 1: evaluation of the stemflow contribution to recharge using a mass balance approach. Hydrol Process 10:71–80

    Article  Google Scholar 

  • Terra MDCNS, de Mello CR, de Mello JM, de Oliveira VA, Nunes MH, Silva VO, Rodrigues AF, Alves GJ (2018) Stemflow in a neotropical forest remnant: vegetative determinants, spatial distribution and correlation with soil moisture. Trees 32:323–335. https://doi.org/10.1007/s00468-017-1634-3

    Article  Google Scholar 

  • Timmons DR, Mutchler CK, Sherstad EM (1971) Use of fluorescein to measure the composition of waterdrop splash. Water Resour Res 7:1020–1023

    Google Scholar 

  • Trenberth KE (2014) Water cycles and climate change. In: Freedman B (ed) Global environmental change, Chapter 4, pp 31–37. Springer, Dordrecht

    Google Scholar 

  • Vaezi AR, Ahmadi M, Cerda A (2017) Contribution of raindrop impact to the change of soil physical properties and water erosion under semi-arid rainfalls. Sci Total Environ 583:382–392. https://doi.org/10.1016/j.scitotenv.2017.01.078

    Article  Google Scholar 

  • Van Stan JT, Gordon DA (2018) Mini-review: stemflow as a resource limitation to near-stem soils. Front Plant Sci 9. Article 248. https://doi.org/10.3389/fpls.2018.00248

  • Vanguelova EI, Benham S, Pitman R, Moffat AJ, Broadmeadow M, Nisbet T, Durrant D, Barsoum M, Wilkinson M, Bochereau F, Hutchings T, Broadmeadow S, Crow P, Taylor P (2010) Chemical fluxes in time through forest ecosystems in the UK – Soil response to pollution recovery. Environ Pollut 158:1857–1869. https://doi.org/10.1016/j.envpol.2009.10.044

    Article  Google Scholar 

  • Vieira G, Mora C, Gouveia MM (2004) Oblique rainfall and contemporary geomorphological dynamics (Serra da Estrela, Portugal). Hydrol Process 18:807–824. https://doi.org/10.1002/hyp.1259

    Article  Google Scholar 

  • Villermaux E, Eloi F (2011) The distribution of raindrop speeds. Geophys Res Lett 38:L19805. https://doi.org/10.1029/2011GL048863

    Article  Google Scholar 

  • Wagenbrenner JW, Robichaud PR (2014) Post-fire bedload sediment delivery across spatial scales in the interior western United States. Earth Surf Proc Land 39:865–876. https://doi.org/10.1002/esp.3488

    Article  Google Scholar 

  • Wang PK, Pruppacher HR (1977) Acceleration to terminal velocity of cloud and raindrops. J Appl Meteorol 16:275–280

    Article  Google Scholar 

  • Wang XP, Wang ZN, Berndtsson R, Zhang YF, Pan YX (2011) Desert shrub stemflow and its significance in soil moisture replenishment. Hydrol Earth Syst Sci 15:561–567. https://doi.org/10.5194/hess-15-561-2011

  • Waring RH, Running SW (2007) Forest ecosystems. Analysis at multiple scales, 3rd edn. Academic Press, 440 pp

    Google Scholar 

  • Weggel JR, Rustom R (1992) Soil erosion by rainfall and runoff—state of the art. Geotext Geomembr 11:551–572

    Article  Google Scholar 

  • Westbrook CD, Hogan RJ, O’Connor EJ, Illingworth AJ (2010) Estimating drizzle drop size and precipitation rate using two-colour lidar measurements. Atmos Meas Tech 3:671–681. https://doi.org/10.5194/amt-3-671-2010

    Article  Google Scholar 

  • Williamson GB (1981) Driptips and splash erosion. Biotropica 13:228–231

    Article  Google Scholar 

  • Williamson GB, Romero A, Armstrong JK, Gush TJ, Hruska AJ, Klass PE, Thompson JT (1983) Driptips drop size and leaf drying. Biotropica 15:232–234

    Article  Google Scholar 

  • Yakubu ML, Yusop Z, Fulazzaky MA (2016) The influence of rain intensity on raindrop diameter and the kinetics of tropical rainfall: case study of Skudai, Malaysia. Hydrol Sci J 61:944–951. https://doi.org/10.1080/02626667.2014.934251

    Article  Google Scholar 

  • Yang X, Gray J, Chapman G, Zhu Q, Tulau M, McInnes-Clarke S (2018) Digital map** of soil erodibility for water erosion in New South Wales, Australia. Soil Res 56:158–170. https://doi.org/10.1071/SR17058

    Article  Google Scholar 

  • Yariv S (1976) Comments on the mechanism of soil detachment by rainfall. Geoderma 15:393–399

    Article  Google Scholar 

  • Ye H, Fetzer EJ, Behrangi A, Wong S, Lambrigsten B, Wang CY, Cohen J, Gamelin BL (2016) Increasing daily precipitation intensity associated with warmer air temperatures over Northern Eurasia. J Clim. https://doi.org/10.1175/JCLI-D-14-00771.1

    Article  Google Scholar 

  • Yu CK, Hsieh PR, Yuter SE, Cheng LW, Tsai CL, Lin CY, Chen Y (2016) Measuring droplet fall speed with a high-speed camera: indoor accuracy and potential outdoor applications. Atmos Meas Tech 9:1755–1766. https://doi.org/10.5194/amt-9-1755-2016

    Article  Google Scholar 

  • Zhang YF, Wang XP, Hu R, Pan YX (2017) Stemflow volume per unit rainfall as a good variable to determine the relationship between stemflow amount and morphological metrics of shrubs. J Arid Environ 141:1–6. https://doi.org/10.1016/j.jaridenv.2017.02.002

    Article  Google Scholar 

  • Zhou GY, Morris JD, Yan JH, Yu ZY, Peng SL (2002) Hydrological impacts of reafforestation with eucalypts and indigenous species: a case study in southern China. For Ecol Manag 167:209–222

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Dunkerley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dunkerley, D. (2020). A Review of the Effects of Throughfall and Stemflow on Soil Properties and Soil Erosion . In: Van Stan, II, J., Gutmann, E., Friesen, J. (eds) Precipitation Partitioning by Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-29702-2_12

Download citation

Publish with us

Policies and ethics

Navigation