Ferroptosis in Cancer Therapy

  • Chapter
  • First Online:
Ferroptosis in Health and Disease
  • 1536 Accesses

Abstract

Ferroptosis, firstly demonstrated in 2012, is a type of iron- and lipid hydroperoxides-dependent regulated cell death. This newly recognized cell death morphologically, biochemically and genetically distinct from other types of cell death including apoptosis, necrosis, pyroptosis and autophagy. A series of strategies have been developed to induce ferroptosis to eliminate cancer cells, including overexpression or knockdown of ferroptosis-related genes, use of clinical drugs, chemical compounds, and iron-containing nanomaterials. A large number of studies have raised that ferroptosis might be a new option for clinical cancer therapy. However, it still exists long distance between the findings in the laboratory and the effective use in clinical cancer treatment using ferroptosis. Here, we introduced the main mechanism of ferroptosis and how potential ferrotposis is inhibited in different cancer types, and summarized the gene targets (GPX4, SLC7A11, ACSL4, CARS, SAT1, DPP4, NRF2, CD44v, CISD1, HSPB1), drug inducers (erastin and its analogs, RSL3 and its analogs, inhibitors of GSH synthesis, FINO2, statins, ART) and nanomaterial inducers (iron oxide nanoparticles, amorphous iron nanoparticles, iron–organic frameworks, iron-platinum nanoparticles and other indirect iron-based nanomaterials) for ferroptosis. With the advancement of ferroptosis theory, great progress in clinical cancer therapy might be achieved in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrams RP, Carroll WL, Woerpel KA (2016) Five-membered ring peroxide selectively initiates ferroptosis in cancer cells. ACS Chem Biol 11:1305–1312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alvarez SW et al (2017) NFS1 undergoes positive selection in lung tumours and protects cells from ferroptosis. Nature 551:639–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baer MR, Augustinos P, Kinniburgh AJ (1992) Defective c-myc and c-myb RNA turnover in acute myeloid leukemia cells. Blood 79:1319–1326

    CAS  PubMed  Google Scholar 

  • Bannai S, Kitamura E (1980) Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem 255:2372–2376

    CAS  PubMed  Google Scholar 

  • Brigelius-Flohe R, Maiorino M (2013) Glutathione peroxidases. Biochim Biophys Acta 1830:3289–3303

    CAS  PubMed  Google Scholar 

  • Bruix J et al (2017) Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 389:56–66

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhang Z, Yang K, Du J, Xu Y, Liu S (2015) Myeloid zinc-finger 1 (MZF-1) suppresses prostate tumor growth through enforcing ferroportin-conducted iron egress. Oncogene 34:3839–3847

    Article  CAS  PubMed  Google Scholar 

  • Cheng Z, Li Y (2007) What is responsible for the initiating chemistry of iron-mediated lipid peroxidation: an update. Chem Rev 107:748–766

    Article  CAS  PubMed  Google Scholar 

  • Cramer SL et al (2017) Systemic depletion of L-cyst(e)ine with cyst(e)inase increases reactive oxygen species and suppresses tumor growth. Nat Med 23:120–127

    Article  CAS  PubMed  Google Scholar 

  • DeNicola GM et al (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 475:106–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon SJ et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Doll S et al (2017) ACSL4 dictates ferroptosis sensitivity by sha** cellular lipid composition. Nat Chem Biol 13:91–98

    Article  CAS  PubMed  Google Scholar 

  • Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3:285–296

    Article  CAS  PubMed  Google Scholar 

  • Eling N, Reuter L, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2:517–532

    Article  PubMed  PubMed Central  Google Scholar 

  • Fradejas N, Carlson BA, Rijntjes E, Becker NP, Tobe R, Schweizer U (2013) Mammalian Trit1 is a tRNA([Ser]Sec)-isopentenyl transferase required for full selenoprotein expression. Biochem J 450:427–432

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Monian P, Quadri N, Ramasamy R, Jiang X (2015) Glutaminolysis and transferrin regulate ferroptosis. Mol Cell 59:298–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaschler MM et al (2018) FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol 14:507–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geldenhuys WJ, Leeper TC, Carroll RT (2014) mitoNEET as a novel drug target for mitochondrial dysfunction. Drug Discov Today 19:1601–1606

    Article  CAS  PubMed  Google Scholar 

  • Guo J et al (2018) Ferroptosis: a novel anti-tumor action for cisplatin. Cancer Res Treat 50:445–460

    Article  CAS  PubMed  Google Scholar 

  • Hao S et al (2017) Cysteine dioxygenase 1 mediates erastin-induced ferroptosis in human gastric cancer cells. Neoplasia 19:1022–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasegawa M et al (2016) Functional interactions of the cystine/glutamate antiporter, CD44v and MUC1-C oncoprotein in triple-negative breast cancer cells. Oncotarget 7:11756–11769

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayano M, Yang WS, Corn CK, Pagano NC, Stockwell BR (2016) Loss of cysteinyl-tRNA synthetase (CARS) induces the transsulfuration pathway and inhibits ferroptosis induced by cystine deprivation. Cell Death Differ 23:270–278

    Article  CAS  PubMed  Google Scholar 

  • Houessinon A et al (2016) Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer 15:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huo H, Zhou Z, Qin J, Liu W, Wang B, Gu Y (2016) Erastin disrupts mitochondrial permeability transition pore (mPTP) and induces apoptotic death of colorectal cancer cells. PLoS One 11:e0154605

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ishimoto T et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 19:387–400

    Article  CAS  PubMed  Google Scholar 

  • Jennis M et al (2016) An African-specific polymorphism in the TP53 gene impairs p53 tumor suppressor function in a mouse model. Genes Dev 30:918–930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L et al (2015) Ferroptosis as a p53-mediated activity during tumour suppression. Nature 520:57–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joseph CA, Maroney MJ (2007) Cysteine dioxygenase: structure and mechanism. Chem Commun (Camb):3338–3349

    Google Scholar 

  • Kennedy D et al (2017) HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis 8:e3026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SE et al (2016) Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. Nat Nanotechnol 11:977–985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu M et al (2010) The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12:213–223

    Article  CAS  PubMed  Google Scholar 

  • Kwon MY, Park E, Lee SJ, Chung SW (2015) Heme oxygenase-1 accelerates erastin-induced ferroptotic cell death. Oncotarget 6:24393–24403

    PubMed  PubMed Central  Google Scholar 

  • Lachaier E et al (2014) Sorafenib induces ferroptosis in human cancer cell lines originating from different solid tumors. Anticancer Res 34:6417–6422

    CAS  PubMed  Google Scholar 

  • Larraufie MH, Yang WS, Jiang E, Thomas AG, Slusher BS, Stockwell BR (2015) Incorporation of metabolically stable ketones into a small molecule probe to increase potency and water solubility. Bioorg Med Chem Lett 25:4787–4792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WP, Su CH, Chang YC, Lin YJ, Yeh CS (2016) Ultrasound-induced reactive oxygen species mediated therapy and imaging using a fenton reaction activable polymersome. ACS Nano 10:2017–2027

    Article  CAS  PubMed  Google Scholar 

  • Lin CH et al (2016) Decreased mRNA expression for the two subunits of system xc(-), SLC3A2 and SLC7A11, in WBC in patients with schizophrenia: evidence in support of the hypo-glutamatergic hypothesis of schizophrenia. J Psychiatr Res 72:58–63

    Article  PubMed  Google Scholar 

  • Lo M, Wang YZ, Gout PW (2008) The x(c)- cystine/glutamate antiporter: a potential target for therapy of cancer and other diseases. J Cell Physiol 215:593–602

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Henson ES, Chen Y, Gibson SB (2016) Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis 7:e2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma P et al (2017) Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species. Nano Lett 17:928–937

    Article  CAS  PubMed  Google Scholar 

  • Marengo B et al (2008) Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma. Free Radic Biol Med 44:474–482

    Article  CAS  PubMed  Google Scholar 

  • Ou Y, Wang SJ, Li D, Chu B, Gu W (2016) Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc Natl Acad Sci USA 113:E6806–E6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schott C, Graab U, Cuvelier N, Hahn H, Fulda S (2015) Oncogenic RAS mutants confer resistance of RMS13 rhabdomyosarcoma cells to oxidative stress-induced ferroptotic cell death. Front Oncol 5:131

    Article  PubMed  PubMed Central  Google Scholar 

  • Sehm T et al (2016) Sulfasalazine impacts on ferroptotic cell death and alleviates the tumor microenvironment and glioma-induced brain edema. Oncotarget 7:36021–36033

    PubMed  PubMed Central  Google Scholar 

  • Shen J et al (2014) Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4:487–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Z, Song J, Yung BC, Zhou Z, Wu A, Chen X (2018) Emerging strategies of cancer therapy based on ferroptosis. Adv Mater 30:e1704007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shimada K et al (2016) Global survey of cell death mechanisms reveals metabolic regulation of ferroptosis. Nat Chem Biol 12:497–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shitara K et al (2017) Dose-escalation study for the targeting of CD44v(+) cancer stem cells by sulfasalazine in patients with advanced gastric cancer (EPOC1205). Gastric Cancer 20:341–349

    Article  CAS  PubMed  Google Scholar 

  • Sindrilaru A et al (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skouta R et al (2014) Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J Am Chem Soc 136:4551–4556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohn YS et al (2013) NAF-1 and mitoNEET are central to human breast cancer proliferation by maintaining mitochondrial homeostasis and promoting tumor growth. Proc Natl Acad Sci USA 110:14676–14681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stockwell BR et al (2017) Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171:273–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su YL, Fang JH, Liao CY, Lin CT, Li YT, Hu SH (2015) Targeted mesoporous iron oxide nanoparticles-encapsulated perfluorohexane and a hydrophobic drug for deep tumor penetration and therapy. Theranostics 5:1233–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X et al (2015) HSPB1 as a novel regulator of ferroptotic cancer cell death. Oncogene 34:5617–5625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X et al (2016) Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63:173–184

    Article  CAS  PubMed  Google Scholar 

  • Tan S, Schubert D, Maher P (2001) Oxytosis: a novel form of programmed cell death. Curr Top Med Chem 1:497–506

    Article  CAS  PubMed  Google Scholar 

  • Tenhunen R, Marver HS, Schmid R (1969) Microsomal heme oxygenase. characterization of the enzyme. J Biol Chem 244:6388–6394

    CAS  PubMed  Google Scholar 

  • Viswanathan VS et al (2017) Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature 547:453–457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SJ, Ou Y, Jiang L, Gu W (2016a) Ferroptosis: a missing puzzle piece in the p53 blueprint? Mol Cell Oncol 3:e1046581

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2016b) In vivo MR and fluorescence dual-modality imaging of atherosclerosis characteristics in mice using profilin-1 targeted magnetic nanoparticles. Theranostics 6:272–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weiwer M et al (2012) Development of small-molecule probes that selectively kill cells induced to express mutant RAS. Bioorg Med Chem Lett 22:1822–1826

    Article  CAS  PubMed  Google Scholar 

  • Wiley SE, Murphy AN, Ross SA, van der Geer P, Dixon JE (2007) MitoNEET is an iron-containing outer mitochondrial membrane protein that regulates oxidative capacity. Proc Natl Acad Sci USA 104:5318–5323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C (1995) Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441–469

    Article  CAS  PubMed  Google Scholar 

  • Wu FQ et al (2016) ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1alpha. J Hepatol 65:314–324

    Article  CAS  PubMed  Google Scholar 

  • **e Y et al (2017) The tumor suppressor p53 limits ferroptosis by blocking DPP4 activity. Cell Rep 20:1692–1704

    Article  CAS  PubMed  Google Scholar 

  • Yagoda N et al (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang WS et al (2014) Regulation of ferroptotic cancer cell death by GPX4. Cell 156:317–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yen SK, Padmanabhan P, Selvan ST (2013) Multifunctional iron oxide nanoparticles for diagnostics, therapy and macromolecule delivery. Theranostics 3:986–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu Y et al (2015) The ferroptosis inducer erastin enhances sensitivity of acute myeloid leukemia cells to chemotherapeutic agents. Mol Cell Oncol 2:e1054549

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yuan H, Li X, Zhang X, Kang R, Tang D (2016a) CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun 478:838–844

    Article  CAS  PubMed  Google Scholar 

  • Yuan H, Li X, Zhang X, Kang R, Tang D (2016b) Identification of ACSL4 as a biomarker and contributor of ferroptosis. Biochem Biophys Res Commun 478:1338–1343

    Article  CAS  PubMed  Google Scholar 

  • Yue L et al (2017) pH-responsive, self-sacrificial nanotheranostic agent for potential in vivo and in vitro dual modal MRI/CT imaging, real-time, and in situ monitoring of cancer therapy. Bioconjug Chem 28:400–409

    Article  CAS  PubMed  Google Scholar 

  • Zanganeh S et al (2016) Iron oxide nanoparticles inhibit tumour growth by inducing pro-inflammatory macrophage polarization in tumour tissues. Nat Nanotechnol 11:986–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C et al (2016a) Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction. Angew Chem Int Ed Engl 55:2101–2106

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Hu C, Ran W, Meng J, Yin Q, Li Y (2016b) Recent progress in light-triggered nanotheranostics for cancer treatment. Theranostics 6:948–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng DW et al (2017) Switching apoptosis to ferroptosis: metal-organic network for high-efficiency anticancer therapy. Nano Lett 17:284–291

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z et al (2017) Activatable singlet oxygen generation from lipid hydroperoxide nanoparticles for cancer therapy. Angew Chem Int Ed Engl 56:6492–6496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Guo, S., Yang, Y., Xue, X., Wang, J. (2019). Ferroptosis in Cancer Therapy. In: Tang, D. (eds) Ferroptosis in Health and Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-26780-3_18

Download citation

Publish with us

Policies and ethics

Navigation