A Non-local Formulation of the One-Phase Stefan Problem Based on Extended Irreversible Thermodynamics

  • Conference paper
  • First Online:
Extended Abstracts Spring 2018

Part of the book series: Trends in Mathematics ((RPCRMB,volume 11))

  • 421 Accesses

Abstract

Non-local effects are introduced into a mathematical description of a solidification process based on Fourier’s law with a size-dependent thermal conductivity. An asymptotic solution based on a large Stefan number is proposed. The agreement with the numerical solution is excellent for any Nusselt number.

The author acknowledges that the research leading to these results has been funded by ‘La Caixa’ Foundation and by the CERCA programme of the Generalitat de Catalunya.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. F.X. Alvarez, D. Jou, Size and frequency dependence of effective thermal conductivity. J. Appl. Phys. 103(9), 094321 (2008)

    Article  Google Scholar 

  2. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport II. 2003–2012. Appl. Phys. Rev. 1(1), 011305 (2014)

    Article  Google Scholar 

  3. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)

    Article  Google Scholar 

  4. M. Calvo-Schwarzwälder, M.G. Hennessy, P. Torres, T.G. Myers, F.X. Álvarez, A slip-based model for the size-dependent effective thermal conductivity of nanowires. Int. Commun. Heat Mass Transf. 91, 57–63 (2018)

    Article  Google Scholar 

  5. M. Calvo-Schwarzwälder, M.G. Hennessy, P. Torres, T.G. Myers, F.X. Álvarez, Effective thermal conductivity of rectangular nanowires based on phonon hydrodynamics. Int. Commun. Heat Mass Transf. 126, 1120–1128 (2018)

    Article  Google Scholar 

  6. B.Y. Cao, Z.Y. Guo, Equation of motion of a phonon gas and non-Fourier heat conduction. J. Appl. Phys. 102(5), 053503 (2007)

    Article  Google Scholar 

  7. F. Font, A one-phase Stefan problem with size-dependent thermal conductivity. Appl. Math. Modell. 63, 172–178 (2018)

    Article  MathSciNet  Google Scholar 

  8. F. Font, T.G. Myers, S.L. Mitchell, A mathematical model for nanoparticle melting with density change. Microfluid. Nanofluidics 18(2), 233–243 (2015)

    Article  Google Scholar 

  9. Y. Guo, M. Wang, Phonon hydrodynamics and its applications in nanoscale heat transpor. Phys. Rep. 595, 1–44 (2015)

    Article  MathSciNet  Google Scholar 

  10. M.G. Hennessy, M. Calvo-Schwarzwälder, T.G. Myers, Asymptotic analysis of the Guyer-Krumhansl-Stefan model for nanoscale solidification. Appl. Math. Modell. 61, 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  11. D. Jou, J. Casas-Vázquez, G. Lebon, Extended irreversible thermodynamics, 2nd edn. (Springer, Berlin, 1996)

    Chapter  Google Scholar 

  12. D. Li, Y. Wu, P. Kim, L. Shi, P. Yang, A. Majumdar, Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83(14), 2934–2936 (2003)

    Article  Google Scholar 

  13. T.G. Myers, Mathematical modelling of phase change at the nanoscale. Int. Commun. Heat Mass Transf. 76, 59–62 (2016)

    Article  Google Scholar 

  14. H. Ribera, T.G. Myers, A mathematical model for nanoparticle melting with size-dependent latent heat and melt temperature. Microfluid. Nanofluidics 20(11), 147 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Calvo-Schwarzwälder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calvo-Schwarzwälder, M. (2019). A Non-local Formulation of the One-Phase Stefan Problem Based on Extended Irreversible Thermodynamics. In: Korobeinikov, A., Caubergh, M., Lázaro, T., Sardanyés, J. (eds) Extended Abstracts Spring 2018. Trends in Mathematics(), vol 11. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-25261-8_33

Download citation

Publish with us

Policies and ethics

Navigation