Sustainability for 3DP Operations

  • Chapter
  • First Online:
Managing 3D Printing

Abstract

Sustainability is an essential consideration in manufacturing, and within this chapter a detailed appraisal is given to sustainability for 3D printing. An in-depth review of existing research is provided, and a cradle-to-grave assessment technique is shown to assess the environmental impact of 3D printed part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Achillas, C., Aidonis, D., Iakovou, E., Thymianidis, M., & Tzetzis, D. (2015). A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory. Journal of Manufacturing Systems, 37, 328–339.

    Article  Google Scholar 

  • Ahn, D. G. (2011). Applications of laser assisted metal rapid tooling process to manufacture of molding & forming tools – State of the art. International Journal of Precision Engineering and Manufacturing, 12(5), 925–938. https://doi.org/10.1007/s12541-011-0125-5.

    Article  Google Scholar 

  • Ahn, D. G. (2016). Direct metal additive manufacturing processes and their sustainable applications for green technology: A review. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(4), 381–395. https://doi.org/10.1007/s40684-016-0048-9.

    Article  Google Scholar 

  • Allevi, G., Cibeca, M., Fioretti, R., Marsili, R., Montanini, R., & Rossi, G. (2018). Qualification of additively manufactured aerospace brackets: A comparison between thermoelastic stress analysis and theoretical results. Measurement, 126, 252–258. https://doi.org/10.1016/j.measurement.2018.05.068.

    Article  Google Scholar 

  • Arie, M. A., Shooshtari, A. H., & Ohadi, M. M. (2018). Experimental characterization of an additively manufactured heat exchanger for dry cooling of power plants. Applied Thermal Engineering, 129, 187–198. https://doi.org/10.1016/j.applthermaleng.2017.09.140.

    Article  Google Scholar 

  • Armillotta, A., Baraggi, R., & Fasoli, S. (2014). SLM tooling for die casting with conformal cooling channels. International Journal of Advanced Manufacturing Technology, 71(1–4), 573–583. https://doi.org/10.1007/s00170-013-5523-7.

    Article  Google Scholar 

  • Ashby, M. F. (2013). Materials and the environment: Eco-informed material choice (2nd ed.). Waltham, MA; Kidlington, Oxford: Butterworth Heinemann/Elsevier.

    Google Scholar 

  • Atzeni, E., Iuliano, L., Minetola, P., & Salmi, A. (2010). Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototy** Journal, 16(5), 308–317. https://doi.org/10.1108/13552541011065704.

    Article  Google Scholar 

  • Atzeni E., Iuliano L., Marchiandi G., Minetola P., Salmi A., Bassoli E., Denti L., & Gatto A. (2014). Additive manufacturing as a cost-effective way to produce metal parts. 6th International Conference on Advanced Research in Virtual and Physical Prototy**, VR@P 2013, Leira.

    Google Scholar 

  • Bacellar, D., Aute, V., Huang, Z. W., & Radermacher, R. (2017). Design optimization and validation of high-performance heat exchangers using approximation assisted optimization and additive manufacturing. Science and Technology for the Built Environment, 23(6), 896–911. https://doi.org/10.1080/23744731.2017.1333877.

    Article  Google Scholar 

  • Ballardini, R. M., Ituarte, I. F., & Pei, E. (2018). Printing spare parts through additive manufacturing: Legal and digital business challenges. Journal of Manufacturing Technology Management, 29(6), 958–982. https://doi.org/10.1108/Jmtm-12-2017-0270.

    Article  Google Scholar 

  • Balogun, V. A., Kirkwood, N., & Mativenga, P. T. (2015). Energy consumption and carbon footprint analysis of Fused Deposition Modelling: A case study of RP Stratasys Dimension SST FDM. International Journal of Scientific & Engineering Research, 6(8), 6.

    Google Scholar 

  • Barbieri, S. G., Giacopini, M., Mangeruga, V., & Mantovani, S. (2017). A design strategy based on topology optimization techniques for an additive manufactured high performance engine piston. 27th International Conference on Flexible Automation and Intelligent Manufacturing, FAIM 2017, 11, 641–649. https://doi.org/10.1016/j.promfg.2017.07.162.

    Article  Google Scholar 

  • Baumers M., Tuck C., Wildman R., Ashcroft I., & Hague R. (2011). Energy Inputs to Additive Manufacturing: Does Capacity Utilization Matter? Solid Freeform Fabrication, an Additive Manufacturing Conference by University of Texas, Austin, Texas (USA).

    Google Scholar 

  • Baumers, M., Duflou, J. R., Flanagan, W., Gutowski, T. G., Kellens, K., & Lifset, R. (2017a). Charting the environmental dimensions of additive manufacturing and 3D printing. Journal of Industrial Ecology, 21, S9–S14. https://doi.org/10.1111/jiec.12668.

    Article  Google Scholar 

  • Baumers, M., Tuck, C., Wildman, R., Ashcroft, I., & Hague, R. (2017b). Shape complexity and process energy consumption in electron beam melting: A case of something for nothing in additive manufacturing? Journal of Industrial Ecology, 21, S157–S167. https://doi.org/10.1111/jiec.12397.

    Article  Google Scholar 

  • Boisselier, D., & Sankare, S. (2012). Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing. Physics Procedia – Laser Assisted Net Shape Engineering 7 (Lane 2012), 39, 455–463. https://doi.org/10.1016/j.phpro.2012.10.061.

    Article  Google Scholar 

  • Brusa, E., Sesana, R., & Ossola, E. (2017). Numerical modeling and testing of mechanical behavior of AM Titanium alloy bracket for aerospace applications. 2nd International Conference on Structural Integrity, ICSI 2017, 5, 753–760. https://doi.org/10.1016/j.prostr.2017.07.166.

    Article  Google Scholar 

  • Calignano, F., Manfredi, D., Ambmbrosio, E. P., Biamino, S., Lombardi, M., Atzeni, E., Salmi, A., Minetola, P., Iuliano, L., & Fino, P. (2017). Overview on additive manufacturing technologies. Proceedings of the IEEE, 105(4), 593–612.

    Article  Google Scholar 

  • Chiu, C. H., & Choi, T. M. (2016). Supply chain risk analysis with mean-variance models: A technical review. Annals of Operations Research, 240(2), 489–507.

    Article  Google Scholar 

  • Clemon L., Sudradjat A., Jaquez M., Krishna A., Rammah M., & Dornfeld D. (2014). Precision and energy usage for additive manufacturing. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2013, Vol 2a.

    Google Scholar 

  • Cortina, M., Arrizubieta, J. I., Calleja, A., Ukar, E., & Alberdi, A. (2018). Case study to illustrate the potential of conformal cooling channels for hot stam** dies manufactured using hybrid process of Laser Metal Deposition (LMD) and milling. Metals, 8(2), 102. https://doi.org/10.3390/met8020102.

    Article  Google Scholar 

  • Dubrovskaya, A., Dongauzer, K., & Faskhutdinov, R. (2017). The design of lightweight gas turbine engine parts using topology optimization. International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2017), 129. https://doi.org/10.1051/matecconf/201712901067.

  • Eyers, D. R. (2017). Supply chain risk management for sustainable additive manufacturing. Sustainable Design and Manufacturing, 68, 280–288. https://doi.org/10.1007/978-3-319-57078-5_28.

    Article  Google Scholar 

  • Eyers, D., & Dotchev, K. (2010). Technology review for mass customisation using rapid manufacturing. Assembly Automation, 30(1), 39–46.

    Article  Google Scholar 

  • Faludi, J., Bayley, C., Bhogal, S., & Iribarne, M. (2015). Comparing environmental impacts of additive manufacturing vs traditional machining via life-cycle assessment. Rapid Prototy** Journal, 21(1), 14–33.

    Article  Google Scholar 

  • Faludi, J., Baumers, M., Maskery, I., & Hague, R. (2017). Environmental impacts of selective laser melting: Do printer, powder, or power dominate? Journal of Industrial Ecology, 21, S144–S156. https://doi.org/10.1111/jiec.12528.

    Article  Google Scholar 

  • Ford, S., & Despeisse, M. (2016). Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. Journal of Cleaner Production, 137, 1573–1587. https://doi.org/10.1016/j.jclepro.2016.04.150.

    Article  Google Scholar 

  • Gebisa, A. W., & Lemu, H. G. (2017). A case study on topology optimized design for additive manufacturing. First Conference of Computational Methods in Offshore Technology (Cotech2017), 276. https://doi.org/10.1088/1757-899x/276/1/012026.

  • Ghadge, A., Karantoni, G., Chaudhuri, A., & Srinivasan, A. (2018). Impact of additive manufacturing on aircraft supply chain performance: A system dynamics approach. Journal of Manufacturing Technology Management, 29(5), 846–865. https://doi.org/10.1108/Jmtm-07-2017-0143.

    Article  Google Scholar 

  • Graf, B., Marko, A., Petrat, T., Gumenyuk, A., & Rethmeier, M. (2018). 3D laser metal deposition: Process steps for additive manufacturing. Welding in the World, 62(4), 877–883. https://doi.org/10.1007/s40194-018-0590-x.

    Article  Google Scholar 

  • Haertel, J. H. K., & Nellis, G. F. (2017). A fully developed flow thermofluid model for topology optimization of 3D-printed air-cooled heat exchangers. Applied Thermal Engineering, 119, 10–24. https://doi.org/10.1016/j.applthermaleng.2017.03.030.

    Article  Google Scholar 

  • Hammond, G., & Jones, C. (2010). Inventory of Carbon and Energy (ICE), Annex B: How to Account for Recycling; a Methodology for Recycling. Bath: The University of Bath.

    Google Scholar 

  • Hansjosten, E., Wenka, A., Hensel, A., Benzinger, W., Klumpp, M., & Dittmeyer, R. (2018). Custom-designed 3D-printed metallic fluid guiding elements for enhanced heat transfer at low pressure drop. Chemical Engineering and Processing, 130, 119–126. https://doi.org/10.1016/j.cep.2018.05.022.

    Article  Google Scholar 

  • Hathaway, B. J., Garde, K., Mantell, S. C., & Davidson, J. H. (2018). Design and characterization of an additive manufactured hydraulic oil cooler. International Journal of Heat and Mass Transfer, 117, 188–200. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.013.

    Article  Google Scholar 

  • Helms, H., & Lambrecht, U. (2007). The potential contribution of light-weighting to reduce transport energy consumption. International Journal of Life Cycle Assessment, 12, 58–64. https://doi.org/10.1065/lca2006.07.258.

    Article  Google Scholar 

  • Holker, R., & Tekkaya, A. E. (2016). Advancements in the manufacturing of dies for hot aluminum extrusion with conformal cooling channels. International Journal of Advanced Manufacturing Technology, 83(5–8), 1209–1220. https://doi.org/10.1007/s00170-015-7647-4.

    Article  Google Scholar 

  • Huang, R. Z., Riddle, M., Graziano, D., Warren, J., Das, S., Nimbalkar, S., Cresko, J., & Masanet, E. (2016). Energy and emissions saving potential of additive manufacturing: the case of lightweight aircraft components. Journal of Cleaner Production, 135, 1559–1570. https://doi.org/10.1016/j.jclepro.2015.04.109.

    Article  Google Scholar 

  • Huang, R. Z., Riddle, M. E., Graziano, D., Das, S., Nimbalkar, S., Cresko, J., & Masanet, E. (2017). Environmental and economic implications of distributed additive manufacturing: The case of injection mold tooling. Journal of Industrial Ecology, 21, S130–S143.

    Article  Google Scholar 

  • Ingarao, G. (2017). Manufacturing strategies for efficiency in energy and resources use: The role of metal sha** processes. Journal of Cleaner Production, 142, 2872–2886. https://doi.org/10.1016/j.jclepro.2016.10.182.

    Article  Google Scholar 

  • Ingarao, G., Priarone, P. C., Deng, Y. L., & Di Lorenzo, R. (2017). Tuning decision support tools for environmentally friendly manufacturing approach selection. Sustainable Design and Manufacturing, 68, 647–655. https://doi.org/10.1007/978-3-319-57078-5_61.

    Article  Google Scholar 

  • Ingarao, G., Priarone, P. C., Deng, Y. L., & Paraskevas, D. (2018). Environmental modelling of aluminium based components manufacturing routes: Additive manufacturing versus machining versus forming. Journal of Cleaner Production, 176, 261–275. https://doi.org/10.1016/j.jclepro.2017.12.115.

    Article  Google Scholar 

  • Jackson, M. A., Arik, V. A., Morrow, J. D., Sangkee, M., & Pfefferkorn, F. E. (2018). Energy consumption model for additive-subtractive manufacturing processes with case study. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 459–466. https://doi.org/10.1007/s40684-018-0049-y.

    Article  Google Scholar 

  • Jafari, D., & Wits, W. W. (2018). The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review. Renewable & Sustainable Energy Reviews, 91, 420–442. https://doi.org/10.1016/j.rser.2018.03.109.

    Article  Google Scholar 

  • Junk S., & Cotè S. (2012). A practical approach to comparing energy effectiveness of rapid prototy** technologies. 17th European Forum on Rapid Prototy** and Manufacturing, Paris (France), 12–14 June 2012.

    Google Scholar 

  • Kellens, K., Baumers, M., Gutowski, T. G., Flanagan, W., Lifset, R., & Duflou, J. R. (2017a). Environmental dimensions of additive manufacturing map** application domains and their environmental implications. Journal of Industrial Ecology, 21, S49–S68. https://doi.org/10.1111/jiec.12629.

    Article  Google Scholar 

  • Kellens, K., Mertens, R., Paraskevas, D., Dewulf, W., & Duflou, J. R. (2017b). Environmental impact of additive manufacturing processes: Does AM contribute to a more sustainable way of part manufacturing? 24th Cirp Conference on Life Cycle Engineering, 61, 582–587. https://doi.org/10.1016/j.procir.2016.11.153.

    Article  Google Scholar 

  • Khajavi, S. H., Partanen, J., & Holmstrom, J. (2014). Additive manufacturing in the spare parts supply chain. Computers in Industry, 65(1), 50–63.

    Article  Google Scholar 

  • Kohtala, C. (2015). Addressing sustainability in research on distributed production: An integrated literature review. Journal of Cleaner Production, 106, 654–668.

    Article  Google Scholar 

  • Kumar, L. J., & Nair, C. G. K. (2017). Laser metal deposition repair applications for Inconel 718 alloy. Materials Today-Proceedings, 4(10), 11068–11077.

    Article  Google Scholar 

  • Lavery, N. P., Jarvis, D. J., Brown, S. G. R., Adkins, N. J., & Wilson, B. P. (2013). Life cycle assessment of sponge nickel produced by gas atomisation for use in industrial hydrogenation catalysis applications. International Journal of Life Cycle Assessment, 18(2), 362–376. https://doi.org/10.1007/s11367-012-0478-8.

    Article  Google Scholar 

  • Le Bourhis, F., Kerbrat, O., Hascoet, J. Y., & Mognol, P. (2013). Sustainable manufacturing: Evaluation and modeling of environmental impacts in additive manufacturing. International Journal of Advanced Manufacturing Technology, 69(9–12), 1927–1939.

    Article  Google Scholar 

  • Leino, M., Pekkarinen, J., & Soukka, R. (2016). The role of laser additive manufacturing methods of metals in repair, refurbishment and remanufacturing – enabling circular economy. Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016, 83, 752–760. https://doi.org/10.1016/j.phpro.2016.08.077.

    Article  Google Scholar 

  • Li, Y., Jia, G. Z., Cheng, Y., & Hu, Y. C. (2017). Additive manufacturing technology in spare parts supply chain: A comparative study. International Journal of Production Research, 55(5), 1498–1515. https://doi.org/10.1080/00207543.2016.1231433.

    Article  Google Scholar 

  • Li, D. W., Liao, W. H., Dai, N., Dong, G. Y., Tang, Y. L., & **e, Y. M. (2018a). Optimal design and modeling of gyroid-based functionally graded cellular structures for additive manufacturing. Computer-Aided Design, 104, 87–99. https://doi.org/10.1016/j.cad.2018.06.003.

    Article  Google Scholar 

  • Li, W. Y., Yang, K., Yin, S., Yang, X. W., Xu, Y. X., & Lupoi, R. (2018b). Solid-state additive manufacturing and repairing by cold spraying: A review. Journal of Materials Science & Technology, 34(3), 440–457. https://doi.org/10.1016/j.jmst.2017.09.015.

    Article  Google Scholar 

  • Liu, J. K. (2016). Guidelines for AM part consolidation. Virtual and Physical Prototy**, 11(2), 133–141. https://doi.org/10.1080/17452759.2016.1175154.

  • Liu, P., Huang, S. H., Mokasdar, A., Zhou, H., & Hou, L. (2014). The impact of additive manufacturing in the aircraft spare parts supply chain: Supply chain operation reference (SCOR) model based analysis. Production Planning & Control, 25(13–14), 1169–1181.

    Article  Google Scholar 

  • Liu, Z. C., Ning, F., Cong, W. L., Jiang, Q. H., Li, T., Zhang, H. C., & Zhou, Y. G. (2016). Energy consumption and saving analysis for laser engineered net sha** of metal powders. Energies, 9(10). https://doi.org/10.3390/en9100763.

  • Mai, J. G., Zhang, L., Tao, F., & Ren, L. (2016). Customized production based on distributed 3D printing services in cloud manufacturing. International Journal of Advanced Manufacturing Technology, 84(1–4), 71–83.

    Article  Google Scholar 

  • Marya, M., Singh, V., Hascoet, J. Y., & Marya, S. (2018). A metallurgical investigation of the direct energy deposition surface repair of ferrous alloys. Journal of Materials Engineering and Performance, 27(2), 813–824. https://doi.org/10.1007/s11665-017-3117-5.

    Article  Google Scholar 

  • Mazur, M., Brincat, P., Leary, M., & Brandt, M. (2017). Numerical and experimental evaluation of a conformally cooled H13 steel injection mould manufactured with selective laser melting. International Journal of Advanced Manufacturing Technology, 93(1–4), 881–900. https://doi.org/10.1007/s00170-017-0426-7.

    Article  Google Scholar 

  • Minetola, P., & Eyers, D. R. (2017). Additive manufacturing as a driver for the sustainability of short-lifecycle customized products: The case study of mobile case covers. Sustainable Design and Manufacturing, 68, 766–775. https://doi.org/10.1007/978-3-319-57078-5_72.

    Article  Google Scholar 

  • Minetola, P., & Eyers, D. (2018). Energy and cost assessment of 3D printed mobile case covers. 25th Cirp Life Cycle Engineering (LCE) Conference, 69, 130–135. https://doi.org/10.1016/j.procir.2017.11.065.

    Article  Google Scholar 

  • Minguella-Canela, J., Planas, S. M., Ayats, J. R. G., & Lopez, M. A. D. (2018). Assessment of the potential economic impact of the use of AM technologies in the cost levels of manufacturing and stocking of spare part products. Materials, 11(8), 1429. https://doi.org/10.3390/ma11081429.

    Article  Google Scholar 

  • Mognol, P., Lepicart, D., & Perry, N. (2006). Rapid prototy**: Energy and environment in the spotlight. Rapid Prototy** Journal, 12(1), 26–34. https://doi.org/10.1108/13552540610637246.

    Article  Google Scholar 

  • Morrow, W. R., Qi, H., Kim, I., Mazumder, J., & Skerlos, S. J. (2007). Environmental aspects of laser-based and conventional tool and die manufacturing. Journal of Cleaner Production, 15(10), 932–943. https://doi.org/10.1016/j.jclepro.2005.11.030.

    Article  Google Scholar 

  • Nagarajan, H. P. N., Malshe, H. A., Haapala, K. R., & Pan, Y. Y. (2016). Environmental performance evaluation of a fast mask image projection stereolithography process through time and energy modeling. Journal of Manufacturing Science and Engineering-Transactions of the ASME, 138(10), 10. https://doi.org/10.1115/1.4033756.

    Article  Google Scholar 

  • Nandwana, P., Peter, W. H., Dehoff, R. R., Lowe, L. E., Kirka, M. M., Medina, F., & Babu, S. S. (2016). Recyclability study on Inconel 718 and Ti-6Al-4V powders for use in electron beam melting. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 47(1), 754–762. https://doi.org/10.1007/s11663-015-0477-9.

    Article  Google Scholar 

  • Oettmeier, K., & Hofmann, E. (2016). Impact of additive manufacturing technology adoption on supply chain management processes and components. Journal of Manufacturing Technology Management, 27(7), 944–968. https://doi.org/10.1108/Jmtm-12-2015-0113.

    Article  Google Scholar 

  • Paris, H., Mokhtarian, H., Coatanea, E., Museau, M., & Ituarte, I. F. (2016). Comparative environmental impacts of additive and subtractive manufacturing technologies. CIRP Annals-Manufacturing Technology, 65(1), 29–32. https://doi.org/10.1016/j.cirp.2016.04.036.

    Article  Google Scholar 

  • Peng, S. T., Li, T., Wang, X. L., Dong, M. M., Liu, Z. C., Shi, J. L., & Zhang, H. C. (2017). Toward a sustainable impeller production: Environmental impact comparison of different impeller manufacturing methods. Journal of Industrial Ecology, 21, S216–S229. https://doi.org/10.1111/jiec.12628.

    Article  Google Scholar 

  • Petrat, T., Graf, B., Gumenyuk, A., & Rethmeier, M. (2016). Laser metal deposition as repair technology for a gas turbine burner made of Inconel 718. Laser Assisted Net Shape Engineering 9 International Conference on Photonic Technologies Proceedings of the Lane 2016, 83, 761–768. https://doi.org/10.1016/j.phpro.2016.08.078.

    Article  Google Scholar 

  • Petrovic, V., & Ninerola, R. (2015). Powder recyclability in electron beam melting for aeronautical use. Aircraft Engineering and Aerospace Technology, 87(2), 147–155. https://doi.org/10.1108/Aeat-11-2013-0212.

    Article  Google Scholar 

  • Peverini O. A., Addamo G., Lumia M., Virone G., Tascone R., Manfredi D., & Calignano F. (2017a). Additive Manufacturing of Antenna-Feed Chains. 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP).

    Google Scholar 

  • Peverini, O. A., Lumia, M., Calignano, F., Addamo, G., Lorusso, M., Ambrosio, E. P., Manfredi, D., & Virone, G. (2017b). Selective laser melting manufacturing of microwave waveguide devices. Proceedings of the IEEE, 105(4), 620–631. https://doi.org/10.1109/Jproc.2016.2620148.

    Article  Google Scholar 

  • Portoles, L., Jorda, O., Jorda, L., Uriondo, A., Esperon-Miguez, M., & Perinpanayagam, S. (2016). A qualification procedure to manufacture and repair aerospace parts with electron beam melting. Journal of Manufacturing Systems, 41, 65–75. https://doi.org/10.1016/j.jmsy.2016.07.002.

    Article  Google Scholar 

  • Priarone, P. C., & Ingarao, G. (2017). Towards criteria for sustainable process selection: On the modelling of pure subtractive versus additive/subtractive integrated manufacturing approaches. Journal of Cleaner Production, 144, 57–68. https://doi.org/10.1016/j.jclepro.2016.12.165.

    Article  Google Scholar 

  • Priarone, P. C., Ingarao, G., di Lorenzo, R., & Settineri, L. (2017a). Influence of material-related aspects of additive and subtractive Ti-6Al-4V manufacturing on energy demand and carbon dioxide emissions. Journal of Industrial Ecology, 21, S191–S202. https://doi.org/10.1111/jiec.12523.

    Article  Google Scholar 

  • Priarone, P. C., Robiglio, M., Ingarao, G., & Settineri, L. (2017b). Assessment of cost and energy requirements of Electron Beam Melting (EBM) and machining processes. Sustainable Design and Manufacturing, 68, 723–735. https://doi.org/10.1007/978-3-319-57078-5_68.

    Article  Google Scholar 

  • Priarone, P. C., Ingarao, G., Lunetto, V., Di Lorenzo, R., & Settineri, L. (2018a). The role of re-design for Additive Manufacturing on the process environmental performance. 25th Cirp Life Cycle Engineering (LCE) Conference, 69, 124–129. https://doi.org/10.1016/j.procir.2017.11.047.

    Article  Google Scholar 

  • Priarone P. C., Lunetto V., Atzeni E., & Salmi A. (2018b). Laser powder bed fusion (L-PBF) additive manufacturing: On the correlation between design choices and process sustainability. CIRPe 2018 – 6th CIRP Global Web Conference, Shantou University (China), 23–25 October 2018.

    Google Scholar 

  • Romero, A., & Vieira, D. R. (2016). How additive manufacturing improves product lifecycle management and supply chain management in the aviation sector? Product Lifecycle Management in the Era of Internet of Things, PLM, 2015(467), 74–85. https://doi.org/10.1007/978-3-319-33111-9_8.

    Article  Google Scholar 

  • Ryan, M. J., & Eyers, D. R. (2017). Sustainable scenarios for engaged manufacturing: A literature review and research directions. Sustainable Design and Manufacturing, 68, 746–755. https://doi.org/10.1007/978-3-319-57078-5_70.

    Article  Google Scholar 

  • Ryan, M. J., Eyers, D. R., Potter, A. T., Purvis, L., & Gosling, J. (2017). 3D printing the future: Scenarios for supply chains reviewed. International Journal of Physical Distribution & Logistics Management, 47(10), 992–1014. https://doi.org/10.1108/Ijpdlm-12-2016-0359.

    Article  Google Scholar 

  • Rylands, B., Bohme, T., Gorkin, R., Fan, J., & Birtchnell, T. (2016). The adoption process and impact of additive manufacturing on manufacturing systems. Journal of Manufacturing Technology Management, 27(7), 969–989. https://doi.org/10.1108/Jmtm-12-2015-0117.

    Article  Google Scholar 

  • Salonitis, K., Chantzis, D., & Kappatos, V. (2017). A hybrid finite element analysis and evolutionary computation method for the design of lightweight lattice components with optimized strut diameter. International Journal of Advanced Manufacturing Technology, 90(9–12), 2689–2701. https://doi.org/10.1007/s00170-016-9528-x.

    Article  Google Scholar 

  • Saltzman, D., Bichnevicius, M., Lynch, S., Simpson, T. W., Reutzel, E. W., Dickman, C., & Martukanitz, R. (2018). Design and evaluation of an additively manufactured aircraft heat exchanger. Applied Thermal Engineering, 138, 254–263. https://doi.org/10.1016/j.applthermaleng.2018.04.032.

    Article  Google Scholar 

  • Scheithauer, U., Schwarzer, E., Moritz, T., & Michaelis, A. (2018). Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the Lithography-Based Ceramic Manufacturing (LCM). Journal of Materials Engineering and Performance, 27(1), 14–20. https://doi.org/10.1007/s11665-017-2843-z.

    Article  Google Scholar 

  • Schmelzle, J., Kline, E. V., Dickman, C. J., Reutzel, E. W., Jones, G., & Simpson, T. W. (2015). (Re)Designing for part consolidation: Understanding the challenges of metal additive manufacturing. Journal of Mechanical Design, 137(11). https://doi.org/10.1115/1.4031156.

  • Seabra, M., Azevedo, J., Araujo, A., Reis, L., Pinto, E., Alves, N., Santos, R., & Mortagua, J. P. (2016). Selective laser melting (SLM) and topology optimization for lighter aerospace components. Xv Portuguese Conference on Fracture, PCF 2016, 1, 289–296. https://doi.org/10.1016/j.prostr.2016.02.039.

    Article  Google Scholar 

  • Serres, N., Tidu, D., Sankare, S., & Hlawka, F. (2011). Environmental comparison of MESO-CLAD (R) process and conventional machining implementing life cycle assessment. Journal of Cleaner Production, 19(9–10), 1117–1124.

    Article  Google Scholar 

  • Sossou, G., Demoly, F., Montavon, G., & Gomes, S. (2018). An additive manufacturing oriented design approach to mechanical assemblies. Journal of Computational Design and Engineering, 5(1), 3–18. https://doi.org/10.1016/j.jcde.2017.11.005.

    Article  Google Scholar 

  • Strong, D., Kay, M., Conner, B., Wakefield, T., & Manogharan, G. (2018). Hybrid manufacturing – integrating traditional manufacturers with Additive Manufacturing (AM) supply chain. Additive Manufacturing, 21, 159–173. https://doi.org/10.1016/j.addma.2018.03.010.

    Article  Google Scholar 

  • Tang, Y. L., Mak, K., & Zhao, Y. F. (2016). A framework to reduce product environmental impact through design optimization for additive manufacturing. Journal of Cleaner Production, 137, 1560–1572.

    Article  Google Scholar 

  • Tang, Y. L., Dong, G. Y., Zhou, Q. X., & Zhao, Y. F. (2018). Lattice structure design and optimization with additive manufacturing constraints. IEEE Transactions on Automation Science and Engineering, 15(4), 1546–1562. https://doi.org/10.1109/Tase.2017.2685643.

    Article  Google Scholar 

  • Thomas, D. (2016). Costs, benefits, and adoption of additive manufacturing: A supply chain perspective. International Journal of Advanced Manufacturing Technology, 85(5–8), 1857–1876. https://doi.org/10.1007/s00170-015-7973-6.

    Article  Google Scholar 

  • Thompson, S. M., Aspin, Z. S., Shamsaei, N., Elwany, A., & Bian, L. (2015). Additive manufacturing of heat exchangers: A case study on a multi-layered Ti-6Al-4V oscillating heat pipe. Additive Manufacturing, 8, 163–174. https://doi.org/10.1016/j.addma.2015.09.003.

    Article  Google Scholar 

  • Walachowicz, F., Bernsdorf, I., Papenfuss, U., Zeller, C., Graichen, A., Navrotsky, V., Rajvanshi, N., & Kiener, C. (2017). Comparative energy, resource and recycling lifecycle analysis of the industrial repair process of gas turbine burners using conventional machining and additive manufacturing. Journal of Industrial Ecology, 21, S203–S215. https://doi.org/10.1111/jiec.12637.

    Article  Google Scholar 

  • Wang, R., Shang, J. Z., Li, X., Wang, Z., & Luo, Z. R. (2018a). Novel topological design of 3D Kagome structure for additive manufacturing. Rapid Prototy** Journal, 24(2), 261–269. https://doi.org/10.1108/Rpj-01-2017-0015.

    Article  Google Scholar 

  • Wang, Y. Q., Zhang, L., Daynes, S., Zhang, H. Y., Feih, S., & Wang, M. Y. (2018b). Design of graded lattice structure with optimized mesostructures for additive manufacturing. Materials & Design, 142, 114–123. https://doi.org/10.1016/j.matdes.2018.01.011.

    Article  Google Scholar 

  • Watson, J. K., & Taminger, K. M. B. (2018). A decision-support model for selecting additive manufacturing versus subtractive manufacturing based on energy consumption. Journal of Cleaner Production, 176, 1316–1322. https://doi.org/10.1016/j.jclepro.2015.12.009.

    Article  Google Scholar 

  • Wits, W. W., Garcia, J. R. R., & Becker, J. M. J. (2016). How additive manufacturing enables more sustainable end-user maintenance, repair and overhaul (MRO) strategies. 13th Global Conference on Sustainable Manufacturing – Decoupling Growth from Resource Use, 40, 693–698. https://doi.org/10.1016/j.procir.2016.01.156.

    Article  Google Scholar 

  • Wong, H., & Eyers, D. (2011). An analytical framework for evaluating the value of enhanced customisation: An integrated operations-marketing perspective. International Journal of Production Research, 49(19), 5779–5800.

    Article  Google Scholar 

  • Yang, S., & Zhao, Y. F. (2018). Additive manufacturing-enabled part count reduction: A lifecycle perspective. Journal of Mechanical Design, 140(3). https://doi.org/10.1115/1.4038922.

  • Yang, S., Tang, Y. L., & Zhao, Y. F. (2015). A new part consolidation method to embrace the design freedom of additive manufacturing. Journal of Manufacturing Processes, 20, 444–449. https://doi.org/10.1016/j.jmapro.2015.06.024.

    Article  Google Scholar 

  • Yang, Y. R., Li, L., Pan, Y. Y., & Sun, Z. Y. (2017). Energy consumption modeling of stereolithography-based additive manufacturing toward environmental sustainability. Journal of Industrial Ecology, 21, S168–S178. https://doi.org/10.1111/jiec.12589.

    Article  Google Scholar 

  • Yao, X. F., & Lin, Y. Z. (2016). Emerging manufacturing paradigm shifts for the incoming industrial revolution. International Journal of Advanced Manufacturing Technology, 85(5–8), 1665–1676.

    Article  Google Scholar 

  • Yin, S., Cavaliere, P., Aldwell, B., Jenkins, R., Liao, H. L., Li, W. Y., & Lupoi, R. (2018). Cold spray additive manufacturing and repair: Fundamentals and applications. Additive Manufacturing, 21, 628–650. https://doi.org/10.1016/j.addma.2018.04.017.

    Article  Google Scholar 

  • Yoon, H. S., Lee, J. Y., Kim, H. S., Kim, M. S., Kim, E. S., Shin, Y. J., Chu, W. S., & Ahn, S. H. (2014). A comparison of energy consumption in bulk forming, subtractive, and additive processes: Review and case study. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(3), 261–279. https://doi.org/10.1007/s40684-014-0033-0.

    Article  Google Scholar 

  • Zhang, X. C., Li, W., Chen, X. Y., Cui, W. Y., & Liou, F. (2018a). Evaluation of component repair using direct metal deposition from scanned data. International Journal of Advanced Manufacturing Technology, 95(9–12), 3335–3348. https://doi.org/10.1007/s00170-017-1455-y.

    Article  Google Scholar 

  • Zhang, X. C., Li, W., & Liou, F. (2018b). Damage detection and reconstruction algorithm in repairing compressor blade by direct metal deposition. International Journal of Advanced Manufacturing Technology, 95(5–8), 2393–2404. https://doi.org/10.1007/s00170-017-1413-8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Minetola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minetola, P., Priarone, P.C., Ingarao, G. (2020). Sustainability for 3DP Operations. In: Eyers, D. (eds) Managing 3D Printing. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-030-23323-5_7

Download citation

Publish with us

Policies and ethics

Navigation