Microbes in the Pathogenesis of Inflammatory Bowel Disease: A Review

  • Chapter
  • First Online:
Infections and the Rheumatic Diseases
  • 828 Accesses

Abstract

Understanding of the pathogenesis of inflammatory bowel disease (IBD) continues to evolve. Current evidence suggests that IBD results from an inappropriate inflammatory response to intestinal microbes in a genetically susceptible host. Dysbiosis, that is, unfavorable alteration of the composition and function of gastrointestinal (GI) microbiota or chronic pathogen infection, may be the mechanisms microbiota contribute to the pathogenesis of IBD. Several microbes have been associated with IBD, and among them, bacteria such as Clostridium species, gram-negatives, fecal microbes, and Mycobacterium avium subspecies remain exciting candidate pathogens but yet undiscovered other bacteria, viruses, and fungi also likely contribute significantly. Current therapeutic strategies targeting microbes that may be beneficial include probiotics and possibly fecal microbiota transplantation while dietary changes, prebiotics, and antibiotics have proven to be unhelpful. Newly discovered techniques focusing on molecular analysis of gut bacteria flora in combination with high genomic approaches are likely to further the insights into the role that microbes play in the development of IBD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G, Benchimol EI, Panaccione R, Ghosh S, Barkema HW, Kaplan GG. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology. 2012;142(1):46.

    Article  PubMed  Google Scholar 

  2. Shivashankar R, Tremaine WJ, Harmsen WS, Loftus EV Jr. Incidence and prevalence of Crohn’s disease and ulcerative colitis in Olmsted County, Minnesota from 1970 through 2010. Clin Gastroenterol Hepatol. 2017;15(6):857.

    Article  PubMed  Google Scholar 

  3. Porter CK, Tribble DR, Aliaga PA, Halvorson HA, Riddle MS. Infectious gastroenteritis and risk of develo** inflammatory bowel disease. Gastroenterology. 2008;135(3):781.

    Article  PubMed  Google Scholar 

  4. Gradel KO, Nielsen HL, Schønheyder HC, Ejlertsen T, Kristensen B, Nielsen H. Increased short- and long-term risk of inflammatory bowel disease after salmonella or campylobacter gastroenteritis. Gastroenterology. 2009;137(2):495.

    Article  PubMed  Google Scholar 

  5. Abraham C, Cho JH. Inflammatory bowel disease. N Engl J Med. 2009;361:2066–78. https://doi.org/10.1056/NEJMra0804647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tanaka M, Nakayama J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol Int. 2017;66(4):515–22.

    Article  CAS  PubMed  Google Scholar 

  7. Kim DH, Cheon JH. Pathogenesis of inflammatory bowel disease and recent advances in biologic therapies. Immune Netw. 2017;17(1):25–40.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11(1):1–10.

    Article  PubMed  Google Scholar 

  9. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science. 2005;308(5728):1635–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Molodecky NA, Kaplan GG. Environmental risk factors for inflammatory bowel disease. Gastroenterol Hepatol (NY). 2010;6(5):339–46.

    Google Scholar 

  11. Sheehan D, Moran C, Shanahan F. The microbiota in inflammatory bowel disease. J Gastroenterol. 2015;50(5):495–507.

    Article  CAS  PubMed  Google Scholar 

  12. Scholz D. The role of nutrition in the etiology of inflammatory bowel disease. Curr Probl Pediatr Adolesc Health Care. 2011;41(9):248–53.

    Article  PubMed  Google Scholar 

  13. Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, Mulder I, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677–89.

    Article  CAS  PubMed  Google Scholar 

  14. Lane ER, Zisman TL, Suskind DL. The microbiota in inflammatory bowel disease: current and therapeutic insights. J Inflamm Res. 2017;10:63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Knights D, Lassen KG, Xavier RJ. Advances in inflammatory bowel disease pathogenesis: linking host genetics and the microbiome. Gut. 2013;62(10):1505–10.

    Article  CAS  PubMed  Google Scholar 

  16. Lidar M, Langevitz P, Shoenfeld Y. The role of infection in inflammatory bowel disease: initiation, exacerbation and protection. Isr Med Assoc J. 2009;11:558–63.

    PubMed  Google Scholar 

  17. Darfeuille-Michaud A, Boudeau J, Bulois P, Neut C, et al. High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology. 2004;127:412–21.

    Article  PubMed  Google Scholar 

  18. Burnham WR, Lennard-Jones JE, Stanford JL, Bird RG. Mycobacteria as a possible cause of inflammatory bowel disease. Lancet. 1978;2:693–6.

    Article  CAS  PubMed  Google Scholar 

  19. Monaghan T, Boswell T, Mahida YR. Recent advances in Clostridium difficile-associated disease. Gut. 2008;57:850–60.

    CAS  PubMed  Google Scholar 

  20. Bartlett JG. Narrative review: the new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med. 2006;145:758–64.

    Article  PubMed  Google Scholar 

  21. Clayton EM, Rea MC, Shanahan F, Quigley EM, Kiely B, Hill C, Ross RP. The vexed relationship between Clostridium difficile and inflammatory bowel disease: an assessment of carriage in an outpatient setting among patients in remission. Am J Gastroenterol. 2009;104:1162–9.

    Article  PubMed  Google Scholar 

  22. Monaghan TM, Cockayne A, Mahida YR. Pathogenesis of Clostridium difficile infection and its potential role in inflammatory bowel disease. Inflamm Bowel Dis. 2015;21:1957–66.

    Article  PubMed  Google Scholar 

  23. Mahida YR, Makh S, Hyde S, et al. Effect of Clostridium difficile toxin A on human intestinal epithelial cells: induction of interleukin 8 production and apoptosis after cell detachment. Gut. 1996;38:337–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 2006;19(3):449–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Koloski NA, Bret L, Radford-Smith G. Hygiene hypothesis in inflammatory bowel disease: a critical review of the literature. World J Gastroenterol. 2008;14:165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lundgren A, Strömberg E, Sjöling A, Lindholm C, et al. Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in Helicobacter pylori- infected patients. Infect Immun. 2005;73:523–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rad R, Brenner L, Bauer S, Schwendy S, Layland L, et al. CD25+/Foxp3+ T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo. Gastroenterology. 2006;131:525–37.

    Article  CAS  PubMed  Google Scholar 

  28. Watson GW, Fuller TJ, Elms J, Kluge RM. Listeria cerebritis: relapse of infection in renal transplant patients. Arch Intern Med. 1978;138:83–7.

    Article  CAS  PubMed  Google Scholar 

  29. Munoz P, Rojas L, Bunsow E, Saez E, et al. Listeriosis: an emerging public health problem especially among the elderly. J Infect. 2012;64:19–33.

    Article  PubMed  Google Scholar 

  30. Miranda-Bautista J, Padilla-Suarez C, Bouza E, Munoz P, Menchen L, Marın-Jimenez I. Listeria monocytogenes infection in inflammatory bowel dis- ease patients: case series and review of the literature. Eur J Gastroenterol Hepatol. 2014;26:1247–52.

    Article  PubMed  Google Scholar 

  31. Dalziel TK. Chronic interstitial enteritis. Br Med J. 1913;2:1068–70.

    Google Scholar 

  32. Olsen I, Tollefsen S, Aagaard C, et al. Isolation of Mycobacterium avium subspecies paratuberculosis reactive CD4 T cells from intestinal biopsies of Crohn’s disease patients. PLoS One. 2009;4:e5641.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Quinton JF, Sendid B, Reumaux D, et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut. 1998;42:788–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mpofu CM, Campbell BJ, Subramanian S, et al. Microbial mannan inhibits bacterial killing by macrophages: a possible pathogenic mechanism for Crohn’s disease. Gastroenterology. 2007;133:1487–98.

    Article  CAS  PubMed  Google Scholar 

  35. Barreau F, Meinzer U, Chareyre F, et al. CARD15/NOD2 is required for Peyer’s patches homeostasis in mice. PLoS One. 2007;2:e523.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Elguezabal N, Chamorro S, Molina E, Garrido JM, Izeta A, Rodrigo L, et al. Lactase persistence, NOD2 status and Mycobacterium avium subsp. paratuberculosis infection associations to inflammatory bowel disease. Gut Pathog. 2012;4:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kojima Y, Kinouchi Y, Takahashi S, Negoro K, Hiwatashi N, Shimosegawa T. Inflammatory bowel disease is associated with a novel promoter polymorphism of natural resistance-associated macrophage protein 1 (NRAMP1) gene. Tissue Antigens. 2001;58:379–84.

    Article  CAS  PubMed  Google Scholar 

  38. Juste RA, Elguezabal N, Pavón A, et al. Association between Mycobacterium avium subsp. paratuberculosis DNA in blood and cellular and humoral immune response in inflammatory bowel disease patients and controls. Int J Infect Dis. 2009;13:247–54.

    Article  CAS  PubMed  Google Scholar 

  39. Macfarlane S, Furrie E, Cummings JH, Macfarlane GT. Chemotaxonomic analysis of bacterial populations colonizing the rectal mucosa in patients with ulcerative colitis. Clin Infect Dis. 2004;38:1690–9.

    Article  PubMed  Google Scholar 

  40. Tabaqchali S, O’Donoghue DP, Bettelheim KA. Escherichia coli antibodies in patients with inflammatory bowel disease. Gut. 1978;19:108–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Johnson JR, Delavari P, Kuskowski M, Stell AL. Phylogenetic distribution of extraintestinal virulence- associated traits in Escherichia coli. J Infect Dis. 2001;183:78–88.

    Article  CAS  PubMed  Google Scholar 

  42. Petersen AM, Halkjær SI, Gluud LL. Intestinal colonization with phylogenetic group B2 Escherichia coli related to inflammatory bowel disease: a systematic review and meta-analysis. Scand J Gastroenterol. 2015;50:1199–207.

    Article  PubMed  Google Scholar 

  43. Navidinia M, Peerayeh SN, Fallah F, Bakhshi B, Sajadinia RS. Phylogenetic grou** and pathotypic comparison of urine and fecal Escherichia coli isolates from children with urinary tract infection. Braz J Microbiol. 2014;45:509–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Martin HM, Campbell BJ, Hart CA, et al. Enhanced Escherichia coli adherence and invasion in Crohn’s disease and colon cancer. Gastroenterology. 2004;127:80–93.

    Article  CAS  PubMed  Google Scholar 

  45. Barnich N, Carvalho FA, Glasser AL, Darcha C, et al. CEACAM6 acts as a receptor for adherent-invasive E. coli, supporting ileal mucosa colonization in Crohn disease. J Clin Investig. 2007;117:1566–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Conte MP, Longhi C, Marazzato M, Conte AL, et al. Adherent-invasive Escherichia coli (AIEC) in pediatric Crohn’s disease patients. BMC Res Notes. 2014;7:748.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Dogan B, Suzuki H, Herlekar D, Sartor RB, Campbell BJ, Roberts CL, et al. Inflammation-associated adherent-invasive Escherichia coli are enriched in pathways for use of propanediol and iron and M-cell translocation. Inflamm Bowel Dis. 2014;20:1919–32.

    Article  PubMed  Google Scholar 

  48. Zhang L, Budiman V, Day AS, Mitchell H, Lemberg DA, Riordan SM, Grimm M, Leach ST, Ismail Y. Isolation and detection of Campylobacter concisus from saliva of healthy individuals and patients with inflammatory bowel disease. J Clin Microbiol. 2010;48:2965–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang L, Man SM, Day AS, Leach ST, et al. Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn’s disease. J Clin Microbiol. 2009;47:453–5.

    Article  PubMed  Google Scholar 

  50. Man SM, Zhang L, Day AS, Leach ST, Lemberg DA, Mitchell H. Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn’s disease. Inflamm Bowel Dis. 2010;16:1008–16.

    Article  PubMed  Google Scholar 

  51. Mahendran V, Riordan SM, Grimm MC, Tran TA, Major J, Kaakoush NO, Mitchell H, Zhang L. Prevalence of Campylobacter species in adult Crohn’s disease and the preferential colonization sites of Campylobacter species in the human intestine. PLoS One. 2011;6:e25417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang L, Lee H, Grimm MC, Riordan SM, Day AS, Lemberg DA. Campylobacter concisus and inflammatory bowel disease. World J Gastroenterol. 2014;20:1259–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Mahendran V, Tan YS, Riordan SM, Grimm MC, et al. The prevalence and polymorphisms of zonula occluden toxin gene in multiple Campylobacter concisus strains isolated from saliva of patients with inflammatory bowel disease and controls. PLoS One. 2013;8:e75525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hugot J-P, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature. 2001;411:599–603.

    Article  CAS  PubMed  Google Scholar 

  55. Muller S, Arni S, Varga L, Balsiger B, Hersberger M, Maly F, et al. Serological and DNA-based evaluation of Chlamydia pneumoniae infection in inflammatory bowel disease. Eur J Gastroenterol Hepatol. 2006;18:889–94.

    Article  PubMed  Google Scholar 

  56. Chen W, Li D, Paulus B, Wilson I, Chadwick VS. High prevalence of Mycoplasma pneumoniae in intestinal mucosal biopsies from patients with inflammatory bowel disease and controls. Dig Dis Sci. 2001;46:2529–35.

    Article  CAS  PubMed  Google Scholar 

  57. Shibata KI, Hasebe A, Sasaki T, Watanabe T. Mycoplasma salivarium induces interleukin-6 and inter- leukin-8 in human gingival fibroblasts. FEMS Immunol Med Microbiol. 1997;19:275–83.

    Article  CAS  PubMed  Google Scholar 

  58. Baseman JB, Tully JG. Mycoplasmas: sophisticated, reemerging, and burdened by their notoriety. Emerg Infect Dis. 1997;3:21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Willing B, Halfvarson J, Dicksved J, et al. Twin studies reveal specific imbalances in the mucosa-associated micro- biota of patients with ileal Crohn’s disease. Inflamm Bowel Dis. 2009;15:653–60.

    Article  PubMed  Google Scholar 

  60. Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis. 2006;12:S3–9.

    Article  PubMed  Google Scholar 

  61. Suau A, Bonnet R, Sutren M, et al. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol. 1999;65:4799–807.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sokol H, Pigneur B, Watterlot L, et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci U S A. 2008;105:16731–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell. 1993;75:263–74.

    Article  CAS  PubMed  Google Scholar 

  64. Sellon RK, Tonkonogy S, Schultz M, Dieleman LA, Grenther W, Balish E, Rennick DM, Sartor RB. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun. 1998;66:5224–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdr1a, spontaneously develop colitis. J Immunol. 1998;161:5733–44.

    CAS  PubMed  Google Scholar 

  66. Pizarro TT, Pastorelli L, Bamias G, Garg RR, Reuter BK, Mercado JR, Chieppa M, Arseneau KO, Ley K, Cominelli F. SAMP1/YitFc mouse strain: a spontaneous model of Crohn’s disease-like ileitis. Inflamm Bowel Dis. 2011;17:2566–84.

    Article  PubMed  Google Scholar 

  67. Garrett WS, Lord GM, Punit S, Lugo-Villarino G, Mazmanian SK, Ito S, Glickman JN, Glimcher LH. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 2007;131:33–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol. 1993;5:1461–71.

    Article  CAS  PubMed  Google Scholar 

  69. Powrie F, Leach MW, Mauze S, Menon S, Caddle LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity. 1994;1:553–62.

    Article  CAS  PubMed  Google Scholar 

  70. Merger M, Viney JL, Borojevic R, Steele-Norwood D, et al. Defining the roles of perforin, Fas/FasL, and tumour necrosis factor alpha in T cell induced mucosal damage in the mouse intestine. Gut. 2002;51:155–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhou P, Streutker C, Borojevic R, Wang Y, Croitoru K. IL-10 modulates intestinal damage and epithelial cell apoptosis in T cell-mediated enteropathy. Am J Physiol Gastrointest Liver Physiol. 2004;287:G599–604.

    Article  CAS  PubMed  Google Scholar 

  72. Little LM, Shadduck JA. Pathogenesis of rotavirus infection in mice. Infect Immun. 1982;38:755–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Higgins LM, Frankel G, Douce G, Dougan G, MacDonald TT. Citrobacter rodentium infection in mice elicits a mucosal Th1 cytokine response and lesions similar to those in murine inflammatory bowel disease. Infect Immun. 1999;67:3031–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Franco MA, Angel J, Greenberg HB. Immunity and correlates of protection for rotavirus vaccines. Vaccine. 2006;24:2718–31.

    Article  CAS  PubMed  Google Scholar 

  75. Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB, Frankel G. Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol. 2014;12:612–23.

    Article  CAS  PubMed  Google Scholar 

  76. Sherman PM, Ossa JC, Johnson-Henry K. Unraveling mechanisms of action of probiotics. Nutr Clin Pract. 2009;24:10–4.

    Article  PubMed  Google Scholar 

  77. Gionchetti P, Rizzello F, Venturi A, Brigidi P, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebo- controlled trial. Gastroenterology. 2000;119:305–9.

    Article  CAS  PubMed  Google Scholar 

  78. Mimura T, Rizzello F, Helwig U, Poggioli G, et al. Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut. 2004;53:108–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tursi A, Brandimarte G, Papa A, Giglio A, et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo- controlled study. Am J Gastroenterol. 2010;105:2218–27.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Sood A, Midha V, Makharia GK, Ahuja V, et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin Gastroenterol Hepatol. 2009;7:1202–9.

    Article  PubMed  Google Scholar 

  81. Miele E, Pascarella F, Giannetti E, Quaglietta L, Baldassano RN, Staiano A. Effect of a probiotic preparation (VSL#3) on induction and maintenance of remission in children with ulcerative colitis. Am J Gastroenterol. 2009;104:437–43.

    Article  CAS  PubMed  Google Scholar 

  82. Rembacken BJ, Snelling AM, Hawkey PM, Chalmers DM, Axon AT. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet. 1999;354:635–9.

    Article  CAS  PubMed  Google Scholar 

  83. Kruis W, Fric P, Pokrotnieks J, Lukás M, et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut. 2004;53:1617–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kruis W, Schütz E, Fric P, Fixa B, Judmaier G, Stolte M. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 1997;11:853–8.

    Article  CAS  PubMed  Google Scholar 

  85. Zocco MA, dal Verme LZ, Cremonini F, Piscaglia AC, et al. Efficacy of Lactobacillus GG in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther. 2006;23:1567–74.

    Article  CAS  PubMed  Google Scholar 

  86. Bousvaros A, Guandalini S, Baldassano RN, Botelho C, et al. A randomized, double-blind trial of Lactobacillus GG versus placebo in addition to standard maintenance therapy for children with Crohn’s disease. Inflamm Bowel Dis. 2005;11:833–9.

    Article  PubMed  Google Scholar 

  87. Furrie E, Macfarlane S, Kennedy A, Cummings JH, Walsh SV, O’neil DA, Macfarlane GT. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trial. Gut. 2005;54:242–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kato K, Mizuno S, Umesaki Y, Ishii Y, et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther. 2004;20:1133–41.

    Article  CAS  PubMed  Google Scholar 

  89. Ishikawa H, Akedo I, Umesaki Y, Tanaka R, Imaoka A, Otani T. Randomized controlled trial of the effect of bifidobacteria-fermented milk on ulcerative colitis. J Am Coll Nutr. 2003;22:56–63.

    Article  PubMed  Google Scholar 

  90. Laake KO, Bjørneklett A, Aamodt G, Aabakken L, Jacobsen M, Bakka A, Vatn MH. Outcome of four weeks’ intervention with probiotics on symptoms and endoscopic appearance after surgical reconstruction with a J-configurated ileal-pouch-anal-anastomosis in ulcerative colitis. Scand J Gastroenterol. 2005;40(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  91. Bernstein CN. Antibiotics, probiotics and prebiotics in IBD. Nestle Nutr Inst Workshop Ser. 2014;79:83–100.

    Article  PubMed  Google Scholar 

  92. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med. 2013;368:407–15.

    Article  PubMed  CAS  Google Scholar 

  93. Nitzan O, Elias M, Peretz A, Saliba W. Role of antibiotics for treatment of inflammatory bowel disease. World J Gastroenterol. 2016;22(3):1078–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ledder O, Turner D. Antibiotics in IBD: still a role in the biological era? Inflamm Bowel Dis. 2018;24(8):1676–88.

    Article  PubMed  Google Scholar 

  95. Balram B, Battat R, Al-Khoury A, D’Aoust J, Afif W, Bitton A, Lakatos PL, Bessissow T. Risk factors associated with Clostridium difficile infection in inflammatory bowel disease: a systematic review and meta-analysis. J Crohns Colitis. 2019;13(1):27–38.

    Article  PubMed  Google Scholar 

  96. Llopis M, Antolin M, Carol M, Borruel N, et al. Lactobacillus casei downregulates commensals’ inflammatory signals in Crohn’s disease mucosa. Inflamm Bowel Dis. 2009;15:275–83.

    Article  PubMed  Google Scholar 

  97. Wu X, Vallance BA, Boyer L, Bergstrom KS, et al. Saccharomyces boulardii ameliorates Citrobacter rodentium-induced colitis through actions on bacterial virulence factors. Am J Physiol Gastrointest Liver Physiol. 2008;294:G295–306.

    Article  CAS  PubMed  Google Scholar 

  98. Yan F, Cao H, Cover TL, Washington MK, et al. Colon-specific delivery of a probiotic-derived soluble protein ameliorates intestinal inflammation in mice through EGFR-dependent mechanism. J Clin Invest. 2011;121:2242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dylag K, Hubalewska-Mazgaj M, Surmiak M, Szmyd J, Brzozowski T. Probiotics in the mechanism of protection against gut inflammation and therapy of gastrointestinal disorders. Curr Pharm Des. 2014;20(7):1149–55.

    Article  CAS  PubMed  Google Scholar 

  100. Bennet JD, Brinkman M. Treatment of ulcerative colitis by implantation of normal colonic flora. Lancet. 1989;1:164.

    Article  CAS  PubMed  Google Scholar 

  101. Anderson JL, Edney RJ, Whelan K. Systematic review: faecal microbiota trans- plantation in the management of inflammatory bowel disease. Aliment Pharmacol Ther. 2012;36:503–16.

    Article  CAS  PubMed  Google Scholar 

  102. Angelberger S, Reinisch W, Makristathis A, Lichtenberger C, et al. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol. 2013;108:1620–30.

    Article  CAS  PubMed  Google Scholar 

  103. Kump PK, Gröchenig HP, Lackner S, Trajanoski S, et al. Alteration of intestinal dysbiosis by fecal microbiota transplantation does not induce remission in patients with chronic active ulcerative colitis. Inflamm Bowel Dis. 2013;19:2155–65.

    Article  PubMed  Google Scholar 

  104. Kunde S, Pham A, Bonczyk S, Crumb T, et al. Safety, tolerability, and clinical response after fecal transplantation in children and young adults with ulcerative colitis. J Pediatr Gastroenterol Nutr. 2013;56:597–601.

    Article  PubMed  Google Scholar 

  105. Qazi T, Amaratunga T, Barnes EL, Fischer M, Kassam Z, Allegretti JR. The risk of inflammatory bowel disease flares after fecal microbiota transplantation: systematic review and meta-analysis. Gut Microbes. 2017;8(6):574–88.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Khan KJ, Ullman TA, Ford AC, Abreu MT, et al. Antibiotic therapy in inflammatory bowel disease: a systemic review and meta-analysis. Am J Gastroenterol. 2011;106:661–73.

    Article  CAS  PubMed  Google Scholar 

  107. Aleksandar D, Xavier RJ, Gevers D. The microbiome in inflammatory bowel diseases: current status and the future ahead. Gastroenterology. 2014;146(6):1489–99.

    Article  CAS  Google Scholar 

  108. Zimmer J, Hofsø D, Aasheim ET, Tanbo T, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66:53–6.

    Article  CAS  PubMed  Google Scholar 

  109. LeBlanc JG, Laiño JE, del Valle MJ, Vannini V, et al. B-group vitamin production by lactic acid bacteria--current knowledge and potential applications. J Appl Microbiol. 2011;111(6):1297–309.

    Article  CAS  PubMed  Google Scholar 

  110. Matsuoka K, Kanai T. The gut microbiota and inflammatory bowel disease. Semin Immunopathol. 2015;37(1):47–55. https://doi.org/10.1007/s00281-014-0454-4. Epub 2014 Nov 25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Bouskra D, Brézillon C, Bérard M, Werts C, Varona R, Boneca IG, Eberl G. Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature. 2008;456(7221):507–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

The authors have no conflicts of interest.

There was no funding for this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Majithia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jatwani, S., Malhotra, B., Crout, T., Majithia, V. (2019). Microbes in the Pathogenesis of Inflammatory Bowel Disease: A Review. In: Espinoza, L. (eds) Infections and the Rheumatic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-23311-2_37

Download citation

Publish with us

Policies and ethics

Navigation