Permutation Statistical Methods

  • Chapter
  • First Online:
A Primer of Permutation Statistical Methods

Abstract

This chapter presents two models of statistical inference: the conventional Neyman–Pearson population model that is taught in every introductory course and the Fisher–Pitman permutation model with which the reader is assumed to unfamiliar. The Fisher–Pitman model consists of three different permutation methods: exact permutation methods, Monte Carlo permutation methods, and moment-approximation permutation methods. The three methods are described and illustrated with example analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The Neyman–Pearson population model of statistical inference is named for Jerzy Neyman (1894–1981) and Egon Pearson (1895–1980).

  2. 2.

    The Fisher–Pitman permutation model of statistical inference is named for R.A. Fisher (1890–1962) and E.J.G. Pitman (1897–1993).

  3. 3.

    There are, of course, other models of statistical inference. A third model, the Bayesian inference model, is also very popular, especially in the decision-making sciences.

  4. 4.

    Some introductory textbooks denote the alternative hypothesis by H A.

  5. 5.

    In this book, an upper-case letter P indicates a cumulative probability value and a lower-case letter p indicates a point probability value.

  6. 6.

    Fisher’s exact test was independently developed by R.A. Fisher, Joseph Irwin, and Frank Yates in the early 1930s [13, 21, 40].

  7. 7.

    Emphasis in the original.

  8. 8.

    One petaflops indicates a quadrillion operations per second, or a 1 with 15 zeroes following it.

References

  1. Barboza, D., Markoff, J.: Power in numbers: China aims for high-tech primacy. N.Y. Times 161, D2–D3 (2011)

    Google Scholar 

  2. Berkson, J.: Some difficulties of interpretation encountered in the application of the chi-square test. J. Am. Stat. Assoc. 33, 526–536 (1938)

    Article  Google Scholar 

  3. Berry, K.J., Johnston, J.E., Mielke, P.W.: A Chronicle of Permutation Statistical Methods: 1920–2000 and Beyond. Springer, Cham (2014)

    Book  Google Scholar 

  4. Biondini, M.E., Mielke, P.W., Berry, K.J.: Data-dependent permutation techniques for the analysis of ecological data. Vegetatio 75, 161–168 (1988) [The name of the journal was changed to Plant Ecology in 1997]

    Google Scholar 

  5. Box, G.E.P., Andersen, S.L.: Permutation theory in the derivation of robust criteria and the study of departures from assumption (with discussion). J. R. Stat. Soc. B Methodol. 17, 1–34 (1955)

    MATH  Google Scholar 

  6. Bross, I.D.J.: Is there an increased risk? Fed. Proc. 13, 815–819 (1954)

    Google Scholar 

  7. Conover, E.: Quantum computers get real. Sci. News Mag. 191, 28–33 (2017)

    Google Scholar 

  8. Curran-Everett, D.: Explorations in statistics: standard deviations and standard errors. Adv. Physiol. Educ. 32, 203–208 (2008)

    Article  Google Scholar 

  9. Eden, T., Yates, F.: On the validity of Fisher’s z test when applied to an actual example of non-normal data. J. Agric. Sci. 23, 6–17 (1933)

    Article  Google Scholar 

  10. Edgington, E.S.: Statistical inference and nonrandom samples. Psychol. Bull. 66, 485–487 (1966)

    Article  Google Scholar 

  11. Feinstein, A.R.: Clinical Biostatistics XXIII: the role of randomization in sampling, testing, allocation, and credulous idolatry (Part 2). Clin. Pharmacol. Ther. 14, 898–915 (1973)

    Article  Google Scholar 

  12. Fisher, R.A.: Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh (1925)

    MATH  Google Scholar 

  13. Fisher, R.A.: The logic of inductive inference (with discussion). J. R. Stat. Soc. 98, 39–82 (1935)

    Article  Google Scholar 

  14. Geary, R.C.: Some properties of correlation and regression in a limited universe. Metron 7, 83–119 (1927)

    MATH  Google Scholar 

  15. Geary, R.C.: Testing for normality. Biometrika 34, 209–242 (1947)

    Article  MathSciNet  Google Scholar 

  16. Haber, M.: Comments on “The test of homogeneity for 2 × 2 contingency tables: a review of and some personal opinions on the controversy” by G. Camilli. Psychol. Bull. 108, 146–149 (1990)

    Article  Google Scholar 

  17. Hays, W.L.: Statistics. Holt, Rinehart and Winston, New York (1988)

    Google Scholar 

  18. Hotelling, H., Pabst, M.R.: Rank correlation and tests of significance involving no assumption of normality. Ann. Math. Stat. 7, 29–43 (1936)

    Article  Google Scholar 

  19. Hubbard, R.: Alphabet soup: blurring the distinctions between p’s and α’s in psychological research. Theor. Psychol. 14, 295–327 (2004)

    Article  Google Scholar 

  20. Hunter, M.A., May, R.B.: Some myths concerning parametric and nonparametric tests. Can. Psychol. 34, 384–389 (1993)

    Article  Google Scholar 

  21. Irwin, J.O.: Tests of significance for differences between percentages based on small numbers. Metron 12, 83–94 (1935)

    MATH  Google Scholar 

  22. Johnston, J.E., Berry, K.J., Mielke, P.W.: Permutation tests: precision in estimating probability values. Percept. Motor Skill. 105, 915–920 (2007)

    Article  Google Scholar 

  23. Kempthorne, O.: Why randomize? J. Stat. Plan. Infer. 1, 1–25 (1977)

    Article  MathSciNet  Google Scholar 

  24. Kennedy, P.E.: Randomization tests in econometrics. J. Bus. Econ. Stat. 13, 85–94 (1995)

    MathSciNet  Google Scholar 

  25. Lachin, J.M.: Statistical properties of randomization in clinical trials. Control. Clin. Trials 9, 289–311 (1988)

    Article  Google Scholar 

  26. Ludbrook, J.: Advantages of permutation (randomization) tests in clinical and experimental pharmacology and physiology. Clin. Exp. Pharmacol. Physiol. 21, 673–686 (1994)

    Article  Google Scholar 

  27. Ludbrook, J.: Issues in biomedical statistics: comparing means by computer-intensive tests. Aust. NZ J. Surg. 65, 812–819 (1995)

    Article  Google Scholar 

  28. Lyons, D.: In race for fastest computer, China outpaces U.S. Newsweek 158, 57–59 (2011)

    Google Scholar 

  29. Matthews, R.: Beautiful, but dangerous. Significance 13, 30–31 (2016)

    Article  Google Scholar 

  30. May, R.B., Hunter, M.A.: Some advantages of permutation tests. Can. Psychol. 34, 401–407 (1993)

    Article  Google Scholar 

  31. Micceri, T.: The unicorn, the normal curve, and other improbable creatures. Psychol. Bull. 105, 156–166 (1989)

    Article  Google Scholar 

  32. Mielke, P.W., Berry, K.J.: Fisher’s exact probability test for cross-classification tables. Educ. Psychol. Meas. 52, 97–101 (1992)

    Article  Google Scholar 

  33. Mielke, P.W., Berry, K.J.: Data-dependent analyses in psychological research. Psychol. Rep. 91, 1225–1234 (2002)

    Article  Google Scholar 

  34. Neyman, J., Pearson, E.S.: On the use and interpretation of certain test criteria for purposes of statistical inference: part I. Biometrika 20A, 175–240 (1928)

    MATH  Google Scholar 

  35. Neyman, J., Pearson, E.S.: On the use and interpretation of certain test criteria for purposes of statistical inference: part II. Biometrika 20A, 263–294 (1928)

    MATH  Google Scholar 

  36. Pitman, E.J.G.: Significance tests which may be applied to samples from any populations. Suppl. J. R. Stat. Soc. 4, 119–130 (1937)

    Article  Google Scholar 

  37. Pitman, E.J.G.: Significance tests which may be applied to samples from any populations: II. The correlation coefficient test. Suppl. J. R. Stat. Soc. 4, 225–232 (1937)

    Article  Google Scholar 

  38. Pitman, E.J.G.: Significance tests which may be applied to samples from any populations: III. The analysis of variance test. Biometrika 29, 322–335 (1938)

    MATH  Google Scholar 

  39. Siegfried, T.: Birth of the qubit. Sci. News Mag. 191, 34–37 (2017)

    Google Scholar 

  40. Yates, F.: Contingency tables involving small numbers and the χ 2 test. Suppl. J. R. Stat. Soc. 1, 217–235 (1934)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Berry, K.J., Johnston, J.E., Mielke, P.W. (2019). Permutation Statistical Methods. In: A Primer of Permutation Statistical Methods. Springer, Cham. https://doi.org/10.1007/978-3-030-20933-9_3

Download citation

Publish with us

Policies and ethics

Navigation