Potential Role of Extremophilic Hydrocarbonoclastic Fungi for Extra-Heavy Crude Oil Bioconversion and the Sustainable Development of the Petroleum Industry

  • Chapter
  • First Online:
Fungi in Extreme Environments: Ecological Role and Biotechnological Significance

Abstract

This book chapter contributes to identifying some core areas inside the oil industry as potential targets for biotechnology, motivated by the increasing global demand of fuels in addition to the reduction of conventional crude oil reserves that have produced a greater interest on the exploitation of unconventional crude reserves. In parallel with enlarged global environmental concerns, it is mandatory the develo** and improving clean-alternative fuel technologies with enhanced bioremediation strategies for unconventional crude. These efforts include the application of petroleum biotechnology with promissory microorganisms, especially extremophilic hydrocarbonoclastic fungi, a broad group of cultivable fungi which live optimally under extreme conditions and are characterized by having a high ability to grow using hydrocarbons as sole carbon source and energy. Few publications are focused on petroleum biotechnology and applications of fungal degradation or bioconversion of extra-heavy crude oil (EHCO), a type of crude that contains elevated amounts of asphaltenes, high-molecular-weight compounds with low bioavailability, and limited susceptibility to being biotransformed. We have included an enriching discussion on the biotechnological strategies applied to the study of cultivable fungal biodiversity inhabiting extreme environments to obtain powerful biocatalysts, following a simple and fast screening to determine both their hydrocarbonoclastic abilities and tolerance of growing in the presence of high concentrations of EHCO and hydrocarbons polycyclic aromatics compounds (HPAs). The potential applications of these promissory extremophilic hydrocarbonoclastic fungal strains in mycoremediation and EHCO-bioupgrading processes to promote the sustainable development of the petroleum industry will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • AlGounaim MY, Diab A, AlAbdulla R, AlZamin N (1995) Effect of petroleum oil pollution on the microbiological populations of the desert soil of Kuwait. Arab Gulf J Sci Res 13(3):653–672

    CAS  Google Scholar 

  • Amund O, Adebowale AA, Ugoji EO (1987) Occurrence and characteristics of hydrocarbon-utilizing bacteria in Nigerian soils contaminated with spent motor oil. Indian J Microbiol 27:63–67

    Google Scholar 

  • April TM, Abbott SP, Foght JM, Currah RS (1998) Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Can J Microbiol 44:270–278

    Article  CAS  Google Scholar 

  • Arellano T, Infante C, Naranjo L (2008) Manejo integral de fosas de hidrocarburos generadas por la actividad petrolera venezolana. Thesis for Magister in Environmental Management, UNEFA 1–250

    Google Scholar 

  • Arulazhagan P, Mnif S, Rajesh Banu J, Huda Q, Jalal MAB (2017) HC-0B-01: biodegradation of hydrocarbons by extremophiles. In: Heimann K, Karthikeyan O, Muthu S (eds) Biodegradation and bioconversion of hydrocarbons. Environmental footprints and eco-design of products and processes. Springer, Singapore, pp 137–162

    Chapter  Google Scholar 

  • Atlas RM, Bartha R (1972) Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng 14:297–308

    Article  CAS  Google Scholar 

  • Ayala M, Hernández-López EL, Perezgasga L, Vázquez-Duhalt R (2012) Reduced coke formation and aromaticity due to chloroperoxidase-catalyzed transformation of asphaltenes from Maya crude oil. Fuel 92:245–249

    Article  CAS  Google Scholar 

  • Bartha R, Atlas RM (1977) The microbiology of aquatic oil spills. Adv Appl Microbiol 22:225–226

    Article  CAS  Google Scholar 

  • Benka-Coker MO, Ekundayo JA (1997) Applicability of evaluating the ability of microbes isolated from an oil spill site to degrade oil. Environ Monit Assess 45:259–272

    Article  CAS  Google Scholar 

  • Bento FM, Gaylarde CC (2001) Biodeterioration of stored diesel oil: studies in Brazil. Int Biodeter Biodegr 47:107–112

    Article  CAS  Google Scholar 

  • Calomiris JJ, Austin B, Walker JD, Colwell RR (1986) Enrichment for estuarine petroleum-degrading bacteria using liquid and solid media. J Appl Bacteriol 42:135–144

    Article  Google Scholar 

  • CDC-NIOSH (2015) Pocket guide to chemical hazards-petroleum distillates (naphtha). www.cdc.gov

  • Chaillan F, Flèche AL, Bury E, Phantavong Y, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595

    Article  CAS  Google Scholar 

  • Chaineau CH, Morel J, Dupont J, Bury E, Oudot J (1999) Comparison of the fuel oil biodegradation potential of hydrocarbon-assimilating microorganisms isolated from a temperate agricultural soil. Sci Total Environ 227:237–247

    Article  CAS  Google Scholar 

  • Colombo JC, Cabello M, Arambarri AM (1996) Biodegradation of Aliphatic and aromatics hydrocarbons by natural soil microflora and pure cultures of imperfect and lignolytic fungi. Environ Pollut 94:355–362

    Article  CAS  Google Scholar 

  • Coyne M (2000) Microbiología del Suelo: un enfoque exploratorio, 1ª Edición edn. Editorial Paraninfo SA, Madrid, Spain, pp 1–440

    Google Scholar 

  • Dávila A, Vázquez-Duhalt R (2006) Enzimas ligninolíticas fúngicas para fines ambientales. Mensaje Bioquímico 30:29–55

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1, pp 1–860

    Google Scholar 

  • Fedorak PM, Semple KM, Vazquez-Duhalt R, Westlake DWS (1993) Chloroperoxidase mediated modifications of petroporphyrins and asphaltenes. Enzyme Microb Technol 15:429–437

    Article  CAS  Google Scholar 

  • Foght JM (2004) Whole-cell bio-processing of aromatic compounds in crude oil and fuels. In: Petroleum biotechnology: developments and perspectives. Elsevier Science, Amsterdam, pp 145–175

    Chapter  Google Scholar 

  • Gallego JLR, García-Martınez MJ, Llamas JF, Belloch C, Pelaez AI, Sanchez J (2007) Biodegradation of oil tank bottom sludge using microbiol Consortia. Biodegradation 18:269–281

    Article  Google Scholar 

  • García-Arellano H, Buenrostro-Gonzalez E, Vazquez-Duhalt R (2004) Biocatalytic transformation of petroporphyrins by chemical modified cytochrome c. Biotechnol Bioeng 85:790–798

    Article  Google Scholar 

  • Gesinde AF, Agbo EB, Agho MO, Dike EFC (2008) Bioremediation of some Nigerian and Arabian crude oils by fungal isolates. Int J Pure Appl Sci 2:37–44

    Google Scholar 

  • Gianfreda L, Rao MA (2004) Potential of extra-cellular enzymes in remediation of polluted soils: a review. Enzyme Microb Technol 35:339–354

    Article  CAS  Google Scholar 

  • Gross S, Robbins EI (2000) Acidophilic and acid-tolerant fungi and yeasts. Hydrobiologia 433:91–109

    Article  Google Scholar 

  • Hemida SK, Bagy MMK, Khallil AM (1993) Utilization of hydrocarbons by fungi. Cryptogamie Mycologie 14:207–213

    Google Scholar 

  • Hernández-López EL, Perezgasga L, Huerta-Saquero A, Vazquez-Duhalt R (2016) Biotransformation of petroleum asphaltenes and high molecular weight polycyclic aromatic hydrocarbons by Neosartorya fischeri. Environ Sci Pollut Res Int 23:10773–10784

    Article  Google Scholar 

  • Lahav R, Nejidat A, Abeliovich A (2002) The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds. Microb Ecol 43:388–396

    Article  CAS  Google Scholar 

  • León V, Córdova J, Muñoz S, De Sisto A, Naranjo L (2007) Process for the upgrading of heavy crude oil, extra-heavy crude oil or bitumens through the addition of a biocatalyst. United States Patent Application 20070231870

    Google Scholar 

  • León Y, De Sisto A, Inojosa Y, Malaver N, Naranjo-Briceño L (2009) Identificación de biocatalizadores potenciales para la remediación de desechos petrolizados de la Faja Petrolif́ era del Orinoco. RET 1:12–25

    Google Scholar 

  • Macelroy RD (1974) Some comments on the evolution of extremophiles. BioSystem 6:74–75

    Article  Google Scholar 

  • Madigan MT, Martinko JM, Bender KS, Buckley DH, Stahl DA (2015) Brock biology of microorganisms, 14th edn. Pearson, Boston

    Google Scholar 

  • Martínez MJ, Ruiz-Dueñas FJ, Guillén F, Martínez AT (1996) Purification and catalytic properties of two manganese-peroxidase isoenzymes from Pleurotus eryngii. Eur J Biochem 237:424–432

    Article  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Duenas FJ, Ferreira P, Camarero S, Guillen F, Martınez MJ, Gutierrez A, del Río JC (2005) Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195–204

    PubMed  Google Scholar 

  • Moore D, Robson GD, Trinci AP (2011) 21st century guidebook to fungi with CD. Cambridge University Press, New York, pp 1–640

    Book  Google Scholar 

  • Nadon L, Siemiatycki J, Dewar R, Krewski D, Gérin M (1995) Cancer risk due to occupational exposure to polycyclic aromatic hydrocarbons. Am J Ind Med 28(3):303–324

    Article  CAS  Google Scholar 

  • Naranjo L, Urbina H, De Sisto A, Leon V (2007) Isolation of autochthonous non-white rot fungi with potential for enzymatic upgrading of Venezuelan extra-heavy crude oil. Biocatal Biotransformation 25:341–349

    Article  CAS  Google Scholar 

  • Naranjo L, Urbina H, González M, Córdova J, Muñoz S, León V. (2008) Potential of autochthonous non-white rot fungi for partial enzymatic conversion (PEC-IDEA Technology) of Venezuelan extra-heavy crude oil. In: Proceeding of the 6th international symposium on fuels and lubricants (ISFL). New Delhi, India. Paper No. 128

    Google Scholar 

  • Naranjo-Briceño L, Perniá B, Guerra M, Demey JR, González M, De Sisto A, Inojosa Y, Fusella E, Freites M, Yegres JF (2013) Potential role of oxidative exoenzymes of the extremophilic fungus Pestalotiopsis palmarum BM-04 in biotransformation of extra-heavy crude oil. Microb Biotechnol 6(6):720–730

    PubMed  PubMed Central  Google Scholar 

  • Naranjo L, Pernía B, Inojosa Y, Rojas D, Sena D’Anna L, González M, De Sisto A (2015) First evidence of fungal strains isolated and identified from naphtha storage tanks and transporting pipelines in Venezuelan oil facilities. Adv Microbiol 5:143–154

    Article  CAS  Google Scholar 

  • Obire O (1993) The suitability of various Nigerian petroleum fractions as substrate for bacterial growth. Discov Innov 5:45–49

    CAS  Google Scholar 

  • Odokuma LO, Okpokwasili GC (1993) Seasonal ecology of hydrocarbon-utilizing microbes in the surface waters of a river. Environ Monit Assess 27(3):175–191

    Article  CAS  Google Scholar 

  • Oudot JP, Dupont J, Haloui S, Roquebert MF (1993) Biodegradation potential of hydrocarbon-degrading fungi in tropical soil. Soil Biol Biochem 25:1167–1173

    Article  CAS  Google Scholar 

  • OPEC (2017) OPEC annual statistical bulletin 2017. http://www.opec.org/opec_web/en/

  • Pernía B, Demey JR, Inojosa Y, Naranjo L (2012) Biodiversidad y potencial hidrocarbonoclástico de hongos aislados de crudo y sus derivados: un meta-análisis. Latinoam Biotecnol Amb Algal 3:1–40

    Google Scholar 

  • Pernía B, Rojas-Tortolero D, Sena L, De Sisto A, Inojosa Y, Naranjo L (2018) Fitotoxicidad de HAP, crudos extra pesados y sus fracciones en Lactuca sativa: una interpretación integral utilizando un índice de toxicidad modificado. Rev Int Contam Ambient 34:79–91

    Article  Google Scholar 

  • Pourfakhraei E, Badraghi J, Mamashli F, Nazari M, Saboury AA (2018) Biodegradation of asphaltene and petroleum compounds by a highly potent Daedaleopsis sp. J Basic Microbiol:1–14

    Google Scholar 

  • Prenafeta-Boldú FX, de Hoog GS, Summerbell RC (2018) Fungal communities in hydrocarbon degradation. In: McGenity T (ed) Microbial communities utilizing hydrocarbons and lipids: members, metagenomics and ecophysiology. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 1–36

    Google Scholar 

  • Rampelotto PH (2013) Extremophiles and extreme environments. Life 3:482–485

    Article  Google Scholar 

  • Ruiz-Dueñas FJ, Martínez MJ, Martínez AT (1999) Molecular characterization of a novel peroxidase isolated from the lignolytic fungus Pleurotus eryngii. Mol Microbiol 31:223–235

    Article  Google Scholar 

  • Saparrat MCN, Guillén F, Arambarri AM, Martínez AT, Martínez MJ (2002) Induction, isolation, and characterization of two laccases from the with rot basidiomycete Coriolopsis rigida. Appl Environ Microbiol 68:1534–1540

    Article  CAS  Google Scholar 

  • Strausz OP, Mojelsky TW, Lown EM (1992) The molecular structure of asphaltenes: an unfolding story. Fuel 71:1355–1363

    Article  CAS  Google Scholar 

  • Terrer C, Vicca S, Hungate BA, Phillips RP, Colin Prentice I (2016) Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353:72–74

    Article  CAS  Google Scholar 

  • Turk M, Plemenitaš A, Gunde-Cimerman N (2011) Extremophilic yeasts: plasma-membrane fluidity as determinant of stress tolerance. Fungal Biol 115:950–958

    Article  CAS  Google Scholar 

  • Urbina H, Reyes A, Fusella E, González M, León V, Naranjo L (2007) Pycnoporus sanguineus IDEA, a laccase-overproducing fungi with high potential in partial enzymatic conversion (PEC-Technology) of Venezuelan extra-heavy crude oil. J Biotechnol 131(2 Supplement 1):S94–S95

    Article  Google Scholar 

  • Urbina H, Aime MC (2018) A closer look at Sporidiobolales: ubiquitous microbial community members of plant and food biospheres. Mycologia 110:79–92

    Google Scholar 

  • Uribe-Álvarez C, Ayala M, Perezgasga L, Naranjo L, Urbina H, Vazquez-Duhalt R (2011) First evidence of mineralization of petroleum asphaltenes by a strain of Neosartorya fischeri. J Microbial Biotechnol 4:663–672

    Article  Google Scholar 

  • Uzoamaka GO, Floretta T, Florence MO (2009) Hydrocarbon degradation potentials of indigenous fungal isolates from petroleum contaminated soils. J Phys Nat Sci 3:1–6

    Google Scholar 

  • Waldo GS, Carlson RM, Moldowan JM, Peters KE, Penner-Hahn JE (1991) Sulfur speciation in heavy petroleums: information from X-ray absorption near-edge structure. Geochim Cosmochim Acta 55:801–814

    Article  CAS  Google Scholar 

  • Zhang X, Li SJ, Li JJ, Liang ZZ, Zhao CQ (2018) Novel natural products from extremophilic fungi. Mar Drugs 16(6):4

    Google Scholar 

  • Zheng C, Zhou J, Wang J, Qu B, Wang J, Lu H, Zhao H (2009) Aerobic degradation of nitrobenzene by immobilization of Rhodotorula mucilaginosa in polyurethane foam. J Hazard Mater 168:298–303

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Projects FONACIT No. 2005000440, Sub-Project 3: MISIÓN CIENCIA No. 2007001401 and FONACIT No. G- 2011000330. The authors recognize Dr. V. León for being a pioneer of the Petroleum Biotechnology in Venezuela, and dedicate this work to the memory of Dr. J. Demey, rest in peace. The authors thank Judith Nyisztor and Aitana Naranjo for grammatical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leopoldo Naranjo-Briceño PhD. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Naranjo-Briceño, L. et al. (2019). Potential Role of Extremophilic Hydrocarbonoclastic Fungi for Extra-Heavy Crude Oil Bioconversion and the Sustainable Development of the Petroleum Industry. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_28

Download citation

Publish with us

Policies and ethics

Navigation