Phytoremediation of Salt-Affected Soils Using Halophytes

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

Increases in environmental pollution along with the increase of rapid population growth have now resulted in significant reduction in the agricultural areas and seriously threatened the proposed crop production. Salinization of lands, in particular, has become a major environmental problem and has been considered as one of the most significant issues to be tackled in arid or semi-arid regions of the world. Salinity not only reduces the agricultural crop production but also negatively affects the physicochemical properties of the soil. Achievements in terms of increases in crop production via molecular and biochemical approaches are thought to have reached its proposed plateau; therefore, new alternative methods have to be investigated. One of the most promising and cost-effective approaches to increase the crop productivity is the use of salt-tolerant halophyte plants to remove toxic salt ions from the saline soils. Via this approach, pressure on generating salt-tolerant crop plants would be reduced, and much healthier crop plants would be cultivated in less stressed saline soils. This chapter focused on the potential use of halophytes and their mechanisms to reveal the phytoremediation characteristics, under saline conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Abobatta, W. F. (2018). Some physiological mechanisms of salt tolerance in the glycophytes plant: Overview. Acta Scientific Agriculture, 2, 154–156.

    Google Scholar 

  • Agarie, S., Shimoda, T., Shimizu, Y., Baumann, K., Sunagawa, H., Kondo, A., Ueno, O., Nakahara, T., Nose, A., Cushman, J. C., et al. (2007). Salt tolerance, salt accumulation, and ionic homeostasis in an epidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum. Journal of Experimental Botany, 58, 1957–1967.

    Article  CAS  PubMed  Google Scholar 

  • Aghaleh, M., Niknam, V., Ebrahimzadeh, H., Razavi, K., et al. (2009). Salt stress effects on growth, pigments, proteins and lipid peroxidation in Salicornia persica and Salicornia europaea. Biologia Plantarum, 53(2), 243–248.

    Article  CAS  Google Scholar 

  • Aronson, J. (1989). Haloph: A database of salt tolerant plant of the world. In E. E. Whitehead (Ed.), Office of arid lands studies. Tucson: University of Arizona, 77pp.

    Google Scholar 

  • Aslam, R., Bostan, N., Amen, N., Maria, M., Safdar, W., et al. (2011). A critical review on halophytes: Salt tolerant plants. Journal of Medicinal Plants Research, 5(33), 7108–7118.

    CAS  Google Scholar 

  • Ben Amor, N., Ben Hamed, K., Debez, A., Grignon, C., Abdelly, C., et al. (2005). Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science, 168(4), 889–899.

    Article  CAS  Google Scholar 

  • Bharti, N., Yadav, D., Barnawal, D., Maji, D., Kalra, A., et al. (2013). Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt. World Journal of Microbiology and Biotechnology, 29, 379–387.

    Article  CAS  PubMed  Google Scholar 

  • Chen, H., & Jiang, J. G. (2010). Osmotic adjustment and plant adaptation to environmental changes related to drought and salinity. Environmental Reviews, 18, 309–319.

    Article  CAS  Google Scholar 

  • Colla, G., Rouphael, Y., Fallovo, C., Cardarelli, M., et al. (2006). Use of Salsola soda as a companion plant to improve greenhouse pepper (Capsicum annuum) performance under saline conditions. New Zealand Journal of Crop and Horticultural Science, 34, 283–290.

    Article  CAS  Google Scholar 

  • Dagar, J. C., Tomar, O. S., Kumar, Y., Yadav, R. K., et al. (2004). Growing three aromatic grasses in different alkali soils in semi-arid regions of northern India. Land Degradation and Development, 15, 143–151.

    Article  Google Scholar 

  • Davy, A. J., Bishop, G. F., Costa, C. S. B., et al. (2001). Salicornia L. (Salicornia pusilla J. Woods, S. ramosissima J. Woods, S. europaea L., S. obscura P.W. Ball & Tutin, S. nitens P.W. Ball & Tutin, S. fragilis P.W. Ball & Tutin, P. W. Ball and Tutin S. dolichostachya Moss). Journal of Ecology, 89, 681–707.

    Article  Google Scholar 

  • De Vos, A. C. (2011). Sustainable exploitation of saline resources: Ecology, ecophysiology and cultivation of potential halophyte crops. Ph.D. dissertation, Vrije Universiteit, Amsterdam.

    Google Scholar 

  • De Vos, A. C., Broekman, R., Groot, M. P., Rozema, J., et al. (2010). Ecophysiological response of Crambe maritima to airborne and soil-borne salinity. Annals of Botany, 105(6), 925–937.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Debez, A., Saadaoui, D., Slama, I., Huchzermeyer, B., Abdelly, C., et al. (2010). Responses of Batis maritima plants challenged with up to two-fold seawater NaCl salinity. Journal of Plant Nutrition and Soil Science, 173, 291–299.

    Article  CAS  Google Scholar 

  • Devi, S., Nandwal, A. S., Angrish, R., Arya, S. S., Kumar, N., Sharma, S. K., et al. (2016). Phytoremediation potential of some halophytic species for soil salinity. International Journal of Phytoremediation, 18(7), 693–696.

    Article  CAS  PubMed  Google Scholar 

  • Diacono M., Montemurro, F. (2015). Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture, 5, 221–230.

    Google Scholar 

  • Dikilitas, M., & Karakas, S. (2010). Salt as potential environmental pollutants, their types, effects on plants, and approaches for their phytoremediation. In M. Ashraf, M. Ozturk, & M. S. A. Ahmad (Eds.), Plant adaptation and phytoremediation (pp. 357–383). Dordrecht/Heidelberg/London/New York: Springer.

    Chapter  Google Scholar 

  • Dikilitas, M., & Karakas, S. (2012). Behaviour of plant pathogens for crops under stress during the determination of physiological, biochemical and molecular approaches for salt stress tolerance. In M. Ashraf (Ed.), Crop production for agricultural improvement (pp. 417–441). Heidelberg/London/New York: Springer.

    Chapter  Google Scholar 

  • Dikilitas, M., Çullu, M. A., Karakaş, S., Aydemir, S., Saygan, E., et al. (2007). Possible use of weeds for the remediation of saline areas in GAP region and their biochemical responses to high level of salinity. In 2nd annual YÖK-SUNY collaboration symposium, scientific collaboration for sustainable development (Abst.), Çukurova University, Adana.

    Google Scholar 

  • Dunn, D. C., Duncan, L. W., Romeo, J. T., et al. (1998). Changes in arginine, PAL activity, and nematode behavior in salinity-stressed citrus. Phytochemistry, 49(2), 413–417.

    Article  CAS  PubMed  Google Scholar 

  • Flowers, T. J., & Colmer, T. D. (2008). Salinity tolerance in halophytes. New Phytologist, 179, 945–963.

    Article  CAS  Google Scholar 

  • Flowers, T. J., Hajibagheri, M. A., Clipson, N. J. W., et al. (1986). Halophytes. The Quarterly Review Biology, 6, 313–337.

    Article  Google Scholar 

  • Flowers, T. J., Galal, H. K., Bromham, L., et al. (2010). Evolution of halophytes: Multiple origins of salt tolerance in land plants. Functional Plant Biology, 37, 604–612.

    Article  Google Scholar 

  • Flowers, T. J., Munns, R., Colmer, T. D., et al. (2015). Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Annals of Botany, 115, 419–431.

    Article  CAS  PubMed  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Grafienberg, A., Botrini, L., Giustiniani, L., Filippi, F., Curadi, M., et al. (2003). Tomato growing ın saline conditions with biodesalinating plants: Salsola soda and Portulaca oleracea. Acta Horticulturae, 609, 301–305.

    Article  Google Scholar 

  • Grattana, S. R., & Grieveb, C. M. (1999). Salinity-mineral nutrient relations in horticultural crops. Scientia Horticulturae, 78, 127–157.

    Article  Google Scholar 

  • Hamed, K. B., Debez, A., Chibani, F., & Abdelly, C. (2004). Salt response of Crithmum maritimum, an oleagineous halophyte. Tropical Ecology, 45(1), 151–159.

    Google Scholar 

  • Haro, R., Bañuelos, M. A., Quintero, F. J., Rubio, F., Rodríguez-Navarro, A. (1993). Genetic basis of sodium exclusion and sodium tolerance in yeast. A model for plants Physiol Plant., 89, 868–874

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Alam, M. M., Bhowmik, P. C., Hossain, M. A., Rahman, M. M., Prasad, M. N. V., Ozturk, M., Fujita, M., et al. (2014). Potential use of halophytes to remediate saline soils. BioMed Research International, Article ID 589341, 12 pages. https://doi.org/10.1155/2014/589341.

  • Herppich, W. B., Huyskens-Keil, S., Schreiner, M., et al. (2008). Effects of saline irrigation on growth, physiology and quality of Mesembryanthemum crystallinum L., a rare vegetable crop. Journal of Applied Botany and Food Quality, 82, 47–54.

    Google Scholar 

  • Hossain, M. D., Inafuku, M., Iwasaki, H., Taira, N., Mostofa, M. G., Oku, H., et al. (2017). Differential enzymatic defense mechanisms in leaves and root of two true mangrove species under long-term salt. Aquatic Botany, 142, 32–40.

    Article  CAS  Google Scholar 

  • Jalali, M., & Merrikhpour, H. (2008). Effects of poor quality irrigation waters on the nutrient leaching and groundwater quality from sandy soil. Environmental Geology, 53, 1289–1298.

    Article  CAS  Google Scholar 

  • James, R. A., Rivelli, A. R., Munns, R., Von Caemmerer, S., et al. (2002). Factors affecting CO2 assimilation, leaf injury and growth in salted durum wheat. Functional Plant Biology, 29, 1363–1403.

    Article  Google Scholar 

  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt. Critical Reviews in Plant Sciences, 30(5), 435–458.

    Article  Google Scholar 

  • Joshi, R., Mangu, V. R., Bedre, R., Sanchez, L., Pilcher, W., Zandkarimi, H., Baisakh, N., et al. (2015). Salt adaptation mechanisms of halophytes: Improvement of salt tolerance in crop plants. In G. K. Pandey (Ed.), Elucidation of abiotic signaling in plants. New York: Springer Science, Business Media. https://doi.org/10.1007/978-1-4939-2540-7_9.

    Chapter  Google Scholar 

  • Kader, M. A., & Lindberg, S. (2010). Cytosolic calcium and pH signaling in plants under salinity. Plant Signaling & Behavior, 5(3), 233–238.

    Article  Google Scholar 

  • Karakas, S. (2013). Development of tomato growing in soil differing in salt levels and effects of companion plants on same physiological parameters and soil remediation. Ph.D. thesis, Graduate School of Natural and Applied Sciences, Soil Sciences and Plant Nutrition, University of Harran, Sanlıurfa.

    Google Scholar 

  • Karakas, S., Çullu, M. A., Dikilitas, M., et al. (2015). In Vitro kosullarda halofit bitkilerden Salsola soda ve Portulaca oleracea’nın NaCl stresine karşı çimlenme ve gelisim durumları. Harran Tarım ve Gıda Bilimleri Dergisi, 19(2), 66–74.

    Google Scholar 

  • Karakas, S., Cullu, M. A., Dikilitas, M., et al. (2017). Comparison of two halophyte species (Salsola soda and Portulaca oleracea) for salt removal potential under different soil salinity conditions. Turkish Journal of Agriculture and Forestry, 41, 183–190.

    Article  CAS  Google Scholar 

  • Karakas, S., Dikilitas, M., Tıpırdamaz, R., et al. (2019). Biochemical and molecular tolerance of Carpobrotus acinaciformis L. halophyte plants exposed to high level of NaCl stress. Harran Tarım ve Gıda Bilimleri Dergisi, 23(1), 99–107.

    Article  Google Scholar 

  • Khan, M. A., Ungar, I. A., Showalter, A. M., et al. (2005). Salt stimulation and tolerance in an intertidal stem-succulent halophyte. Journal of Plant Nutrition, 28, 1365–1374.

    Article  CAS  Google Scholar 

  • Koyro, H. W. (2006). Effect of salinity on growth, photosynthesis, water relations and solute composition of the potential cash crop halophyte Plantago coronopus (L.). Environmental and Experimental Botany, 56(2), 136–146.

    Article  CAS  Google Scholar 

  • Koyro, H. W., Khan, M. A., Lieth, H., et al. (2011). Halophytic crops: A resource for the future to reduce the water crisis? Emirates Journal of Food and Agriculture, 23(1), 1–16.

    Article  Google Scholar 

  • Kronzucker, H. J., Coskun, D., Schulze, L. M., Wong, J. R., Britto, D. T., et al. (2013). Sodium as nutrient and toxicant. Plant and Soil, 369, 1–23.

    Article  CAS  Google Scholar 

  • Kumar, D., Singh, K., Chauhan, H. S., Prasad, A., Beg, S. U., Singh, D. V., et al. (2004). Ameliorative potential of palmarosa for reclamation of sodic soils. Communications in Soil Science and Plant Analysis, 35, 1197–1206.

    Article  CAS  Google Scholar 

  • Malik, K. A., Alsam, Z., Naqvi, M., et al. (1986). Kallar grass–a plant for saline lands (p. 93). Faisalabad: Nuclear Institute for Agriculture and Biology.

    Google Scholar 

  • Menason, E., Betty, T., Vijayan, K. K., Anbudurai, P. R., et al. (2015). Modification of fatty acid composition in salt adopted Synechocystis 6803 cells. Annals of Biological Research, 6, 4–9.

    CAS  Google Scholar 

  • Meng, X., & Sui, J. Z. N. (2018). Mechanisms of salt tolerance in halophytes: Current understanding and recent advances. Open Life Sciences, 13, 149–154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miraj, S. (2016). A review study of therapeutic effects of Peganum harmala. Der Pharmacia Lettre, 8(13), 161–166.

    CAS  Google Scholar 

  • Munns, R. (2005). Genes and salt tolerance: Bringing them together. New Phytologist, 167, 645–663.

    Article  CAS  Google Scholar 

  • Murtaza, G., Ghafoor, A., Rehman, M. Z., Qadir, M., et al. (2013). Marginal-quality water use as an ameliorant for tile-drained saline-sodic soils in a rice-wheat production system. In S. A. Shahid (Ed.), Developments in soil salinity assessment and reclamation: Innovative thinking and use of marginal soil and water resources in irrigated agriculture (pp. 295–311). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Neves, J. P., Ferreıra, L. F., Sımoes, M. P., Gazarını, L. C., et al. (2007). Primary production and nutrient content in two salt marsh species, Atriplex portulacoides L. and Limoniastrum monopetalum L., in Southern Portugal. Estuaries and Coasts, 30(3), 459–468.

    Article  CAS  Google Scholar 

  • O’Leary, J. W., Glenn, E. P., Watson, M. C., et al. (1985). Agricultural production of halophytes irrigated with seawater. Plant and Soil, 89, 311–321.

    Article  Google Scholar 

  • Oster, J. D., & Jayawardane, N. S. (1998). Agricultural management of sodic soils. In M. E. Sumner & R. Naidu (Eds.), Sodic soil: Distribution, management and environmental consequences (pp. 126–147). New York: Oxford University Press.

    Google Scholar 

  • Parida, A. K., & Das, A. B. (2005). Salt tolerance and salinity effects on plant: A review. Ecotoxicology and Environmental Safety, 60, 324–349.

    Article  CAS  PubMed  Google Scholar 

  • Pena, F. J. D., Benes, S. E., Grattan, S., et al. (2013). Field performance of halophytic species under irrigation with saline drainage water in the San Joaquin Valley of California. Agricultural Water Management, 118, 59–69.

    Article  Google Scholar 

  • Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation and Development, 13, 275–294.

    Article  Google Scholar 

  • Qadir, M., Qureshi, R. H., & Ahmad, N. (2002). Amelioration of calcareous saline sodic soils through phytoremediation and chemical strategies. Soil Use and Management, 18, 381–385.

    Article  Google Scholar 

  • Qadir, M., Oster, J. D., Schubert, S., Noble, A. D., Sahrawat, K. L., et al. (2007). Phytoremediation of sodic and saline-sodic soils. Advances in Agronomy, 96, 197–247.

    Article  CAS  Google Scholar 

  • Qadir, M., Tubeileh, A., Akhtar, J., Larbi, A., Minhas, P. S., Khan, M. A., et al. (2008). Productivity enhancement of salt-affected environments through crop diversification. Land Degradation and Development, 19, 429–453.

    Article  Google Scholar 

  • Radyukina, N. L., Kartashov, A. V., Ivanov, Y. V., Shevyakova, N. I., Kuznetsov, V. V., et al. (2007). Functioning of defense systems in halophytes and glycophytes under progressing salinity. Russian Journal of Plant Physiology, 54(6), 806–815.

    Article  CAS  Google Scholar 

  • Rahdari, P., & Hoseini, S. M. (2011). Salinity stress: A review. Journal of Engineering and Applied Science, 1, 63–66.

    Google Scholar 

  • Ramani, B., Reeck, T., Debez, A., Stelzer, R., Huchzermeyer, B., Schmidt, A., Papenbrock, J., et al. (2006). Aster tripolium L. and Sesuvium portulacastrum L. two halophytes, two strategies to survive in saline habitats. Plant Physiology and Biochemistry, 44, 395–408.

    Article  CAS  PubMed  Google Scholar 

  • Ramankutty, N., Mehrabi, Z., Waha, J. L., Kremen, C., Herrero, M., Rieseberg, L. H., et al. (2018). Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology, 69, 789–815.

    Article  CAS  PubMed  Google Scholar 

  • Ravindran, K. C., Venkatesan, K., Balakrishnan, V., Chellappan, K. P., Balasubramani, T., et al. (2007). Restoration of saline land by halophytes for Indian soils. Soil Biology and Biochemistry, 39, 2661–2664.

    Article  CAS  Google Scholar 

  • Rengasamy, P., Chittleborough, D., Helyar, K., et al. (2003). Root-zone salinity and plant-based solutions for dryland salinity. Plant and Soil, 257, 249–260.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils (U.S Department Agriculture handbook 60). Washington, DC: U.S. Government Printing Office.

    Book  Google Scholar 

  • Sai Kachout, S., Ben Mansoura, A., Jaffel, K., Leclerc, J. C., Rejeb, M. N., Ouerghi, Z., et al. (2009). The effect of salinity on the growth of the halophyte Atriplex hortensis (Chenopodiaceae). Applied Ecology and Environmental Research, 7(4), 319–332.

    Article  Google Scholar 

  • Serrano, R., Culianz-Macia, A., Moreno, V., et al. (1999). Genetic engineering of salt and drought tolerance with yeast regulatory genes. Scientia Horticulturae, 78, 261–269.

    Article  CAS  Google Scholar 

  • Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32, 237–249.

    Article  Google Scholar 

  • Singh, A. (2015). Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecological Indicators, 57, 128–130.

    Article  Google Scholar 

  • Singh, D. V., & Anwar, M. (1985). Effect of soil salinity on herb and oil yield and quality of some Cymbopogon species. Journal of the Indian Society of Soil Science, 33, 362–365.

    Google Scholar 

  • Singh, K., Pandey, V. C., Singh, B., Singh, R. R., et al. (2012). Ecological restoration of degraded sodic lands through afforestation and crop**. Ecological Engineering, 43, 70–80.

    Article  Google Scholar 

  • Słupski, J., Achrem-Achremowicz, J., Lisiewska, Z., & Korus, A. (2010). Effect of processing on the aminoacid content of New Zealand spinach (Tetragonia tetragonioides Pall. Kuntze). International Journal of Food Science and Technology, 45(8), 1682–1688.

    Article  CAS  Google Scholar 

  • Smith, J. L., & Doran, J. W. (1996). Measurement and use of pH and electrical conductivity for soil quality analysis. In J. W. Doran & A. J. Jones (Eds.), Methods for assessing soil quality (Soil Science Society of America special publication 49, pp. 169–185). Madison: Soil Science Society of America.

    Google Scholar 

  • Soil Survey Division Staff. (1993). Soil survey manual (USDA handbook no. 18). Washington, DC: U.S. Government Printing Office.

    Google Scholar 

  • Soni, A., Dhakar, S., Kumar, N., et al. (2017). Mechanisms and strategies for improving salinity tolerance in fruit crops. International Journal of Current Microbiology and Applied Sciences, 6(8), 1917–1924.

    Article  CAS  Google Scholar 

  • Suaire, R., Durickovic, I., Framont-Terrasse, L., Leblain, J. Y., De Rouck, A. C., Simonnot, M. O., et al. (2016). Phytoextraction of Na+ and Cl by Atriplex halimus L. and Atriplex hortensis L.: A promising solution for remediation of road runoff contaminated with deicing salts. Ecological Engineering, 94, 182–189.

    Article  Google Scholar 

  • Szabolcs, I. (1994). Soil salinization. In M. Pessarakli (Ed.), Handbook of plant crop stress (pp. 3–11). New York: Marcel Dekker.

    Google Scholar 

  • Tardío, J., Pardo-De-Santayana, M., Morales, R., et al. (2006). Ethno-botanical review of wild edible plants in Spain. Botanical Journal of the Linnean Society, 152(1), 27–71.

    Article  Google Scholar 

  • Ventura, Y., & Sagi, M. (2013). Halophyte crop cultivation: The case for Salicornia and Sarcocornia. Environmental and Experimental Botany, 92, 144–153.

    Article  Google Scholar 

  • Ventura, Y., Wuddineh, W. A., & Myrzabayeva, M. (2011). Effect of seawater concentration on the productivity and nutritional value of annual Salicornia and perennial Sarcocornia halophytes as leafy vegetable crops. Scientia Horticulturae, 128(3), 189–196.

    Article  CAS  Google Scholar 

  • Walter, H. (1961). Salinity problems in the acid zones. The adaptations of plants to saline soils. Arid Zone Research, 14, 65–68.

    Google Scholar 

  • Webb, J. M., Qunitã, R., Papadimitriou, S., Norman, L., Rigby, M., Thomas, D. N., Le Vay, L., et al. (2012). Halophyte filter beds for treatment of saline wastewater from aquaculture. Water Research, 46, 5102–5114.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, C., Lesch, S. M., & Grieve, C. M. (2000). Growth stage modulates salinity tolerance of New Zealand spinach (Tetragonia tetragonioides Pall) and red orach (Atriplex hortensis L.). Annals of Botany, 85(4), 501–509.

    Article  CAS  Google Scholar 

  • Wu, H. (2018). Plant salt tolerance and Na+ sensing and transport. The Crop Journal, 6, 215–225.

    Article  Google Scholar 

  • Yadav, S., Irfan, M., Ahmad, A., & Hayat, S. (2011). Causes of salinity and plant manifestations to salt stress: A review. Journal of Environmental Biology, 32, 667–685.

    PubMed  Google Scholar 

  • Yucel, C., Farhan, M. J., Khairo, A. M., Ozer, G., Cetin, M., Ortas, I., Islam, K. R., et al. (2017). Evaluating Salicornia as a potential forage crop to remediate high groundwater-table saline soil under continental climates. International Journal of Plant and Soil Science, 16(6), 1–10.

    Article  Google Scholar 

  • Zahoor, I., Sajid, M., Ahmad, A., Hameed, M., Nawaz, T., Tarteel, A., et al. (2012). Comparative salinity tolerance of Fimbristylis dichotoma (L.) Vahl and Schoenoplectus juncoides (Roxb.) Palla, the candidate sedges for rehabilitation of saline wetlands. Pakistan Journal of Botany, 44, 1–6.

    CAS  Google Scholar 

  • Zakharin, A. A., & Panichkin, L. A. (2009). Glycophyte salt resistance. Russian Journal of Plant Physiology, 56, 94–103.

    Article  CAS  Google Scholar 

  • Zhao, G. M., Han, Y., Sun, X., Li, S. H., Shi, Q. M., Wang, C. H., et al. (2015). Salinity increases secondary metabolites and enzyme activity in safflower. Industrial Crops and Products, 64, 175–181.

    Article  CAS  Google Scholar 

  • Zhou, Y., Tang, N., Huang, L., Zhao, Y., Tang, X., Wang, K., et al. (2018). Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia Briq. International Journal of Molecular Sciences, 19, 252.

    Article  PubMed Central  CAS  Google Scholar 

  • Zhu, J. K. (2001). Plant salt tolerance. Trends Plant Sciences, 6, 66–71.

    Article  CAS  Google Scholar 

  • Zhu, J. K. (2007). Plant salt stress. In Encylcopedia of life sciences. Chichester: Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Karakas .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Karakas, S., Dikilitas, M., Tıpırdamaz, R. (2020). Phytoremediation of Salt-Affected Soils Using Halophytes. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_93-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_93-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation