Mangroves Under Extreme Environmental Conditions

Isabela Island (Galápagos Islands, NE Pacific) and Abu Dhabi-Dubai (UAE, Arabian Gulf)

  • Living reference work entry
  • First Online:
Handbook of Halophytes

Abstract

The coastline of Isabela Island is dominated by reefs and rocks of volcanic origin. Four mangrove communities are linked to sandy bays (Rhizophoretum manglis); mixed formations on sandy soils and volcanic rock fragments (Lagunculario racemosae-Rhizophoretum manglis); post-coastal formations around lagoons, bays, and estuaries (Laguncularietum racemosae); and uplands marginal mangroves in an ecotone with dry forest (Conocarpetum erectae). The presence of Laguncularia racemosa occurs in substrates where salinities range from 6.9 g/l to 12.3 g/l, whereas the less common Avicennia germinans tolerate salinities as high as 12.5 g/l. At Abu Dhabi, in the southeastern Persian Gulf, wide coastal plains and arid bioclimate are the factors that determine the monospecific mangroves stands of Avicennia marina associated with nearby halophyte or subdesert xerophilic formations. The unique association, Avicenietum marinae, shows two variants: Sesuvium portulacastrum occurs with A. marina on dune formations, and Sarcocornia fruticosa and Halocnemum strobilaceum are associated with A. marina on inland with saline soils or desert plains. Soil characteristics as organic matter, Na+, K+, Mg++, and Cl concentrations, constitute differential factors between the communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Balslev, H., & Ollgaard, B. (2002). Mapa de vegetación del Sur del Ecuador. In Z. Aguirre, J. E. Madsen, E. Cotton, & H. Balslev (Eds.), Botánica Autroecuatoriana – Estudios sobre los recursos vegetales en las provincias de El Oro, Loja y Zamora Chinchipe. Abya Yala, Quito. BCH-019.

    Google Scholar 

  • Borhidi, A. (1991). Phytogeography and Vegetation Ecology of Cuba. Budapest: Akadémici Kiadó.

    Google Scholar 

  • Braun-Blanquet, J. (1964). Plant sociology. London: Hafner Publishing Company.

    Google Scholar 

  • Chapman, V. J. (1944). The 1939 Cambridge University Expedition to Jamaica. Journal of the Linnean Society: Botany, 52, 407.

    Google Scholar 

  • Chapman V J (1970). Mangrove phytosociology. Tropical ecology. Vol. 11(1): 1–19.

    Google Scholar 

  • Chapman, V. J. (1975). Mangrove biogeography. In G. E. Walsh, S. C. Snedaker, & H. J. Teas (Eds.), Proceedings of the international symposium on biology and management of mangroves (Vol. I and II, pp. 3–22). Gainesville: Institute of Food and Agricultural Sciences, University of Florida.

    Google Scholar 

  • Charles Darwin Fundación. (2018). Lista de especies de Galápagos. https://www.darwinfoundation.org

  • Cuatrecasas, J. (1958). Introducción al estudio de los manglares. Bol. Soc. Bot. Mex. 23, 84–98.

    Google Scholar 

  • Deil, U. (2000). Halophytic vegetation along the Arabian coast azonal or linked to climatic zones. Phytocoenologia, 30(3–4), 591–611.

    Article  Google Scholar 

  • Deil, U., & Müller Hohenstein, K. (1996). An outline of the vegetation of Dubai (UAE). Verhandlungen der Gesellschaft für Ökologie, 25, 75–95.

    Google Scholar 

  • Delgadillo, J. M., Peinado, J., Martínez, F., Alcaraz, A., & De La Torre. (1992). Analisis fitosociológico de los saladares y manglares de Baja California, Mexico. Acta Botanica Mexicana, 19, 1–35.

    Article  Google Scholar 

  • Dillon, M. O., Tu, T., Soejima, A., Yi, T., Nie, Z., Tye, A., & Wen, J. (2007). Phylogeny of Nolana (Nolaneae, Solanoideae, Solanaceae) as inferred from granule-bound starch synthase I (GBSSI) sequences. Taxon, 56(4), 1000–1011.

    Article  Google Scholar 

  • Dodd, R. S., Blasco, F., Rafii, Z. A., & Torquebiau, E. (1999). Mangroves of the United Arab Emirates: Ecotypic diversity in cuticular waxes at the bioclimatic extreme. Aquatic Botany, 63, 291–304.

    Article  Google Scholar 

  • Duke, N. C., Marilyn Botto, C., & Ellison, J. C. (1998). Factors influencing in mangroves. Global Ecology and Biogeography Letters, 7, 27–47.

    Article  Google Scholar 

  • Duque Estrada, G. C., Gomes Soares, M. L., Oliveira Chaves, F., & Fernández Cavalcanti, L. (2013). Analysis of structural variabilty of mangrove forest through to physiographic types approach. Aquatic Botany, 111, 135–143.

    Article  Google Scholar 

  • Egler, F. E. (1950). Southeast Saline Everglades vegetation, Florida, and its management. Vegetatio, 3(4/5), 213.

    Google Scholar 

  • Embabi, N. S. (1993). Environmental aspects of geographical distribution of mangrove in the United Arab Emirates. In H. Leith & A. Al-Massom (Eds.), Towards the rational use of high salinity tolerant plants (Vol. 1, pp. 45–58).

    Chapter  Google Scholar 

  • Ewel, K. C., Twilley, R. R., & Eong Ong, J. (1998). Biodiversity and function of mangrove ecosystems. Global Ecology and Biogeography Letters, 7(1), 83–94.

    Article  Google Scholar 

  • Ferreyra, R. (1983). Los tipos de vegetación de la costa peruana. Anales del Jardin Botánico de Madrid, 40(1), 241–256.

    Google Scholar 

  • Galán de Mera, A., & Vicente Orellana José, A. (2006). Aproximación al esquema sintaxonómico de la vegetación de la región del Caribe y América del Sur. Anales de Biologia, 28, 3–27.

    Google Scholar 

  • GNP. (2004). Galápagos National Park. https://www.darwinfoundation.org/en/

  • Hill, K. (2001). Rhizophora mangle. Fort Pierce, Florida: Smithsonian Marine Station at Fort Pierce. www.sms.si.edu/irLspec/Rhizop_mangle.htm

  • Karim, F. M., & Dakheel, A. J. (2006). Salt-tolerant plants of the United Arab Emirates. Dubai: International Center for Biosaline Agriculture (ICBA).

    Google Scholar 

  • Lawesson, J. E., Andersen, H., & Bentley, P. (1987). An updated and annotated checklist of the vascular plants of the Galapagos islands. Reports from the Botanical Institute University of the Aarhus 16.

    Google Scholar 

  • Lyndeman, J. C. (1953). The vegetation of the coastal region of Suriname. Drukkerij en Uitg.-Mij. v/h Kemink. 137p. Thesis of Ph. Doct. Utrech

    Google Scholar 

  • Macnae, W. (1968). A general account of the Fauna and Flora of mangrove swamps and forests in the Indo-West-Pacific region. Advances in Marine Biology, 6, 73.

    Article  Google Scholar 

  • Martinez Quezada, E. (2017). Fitosociología y sintaxonomía de los manglares y saladares de las lagunas costeras de los cayos Coco y Sabinal, Cuba. Acta Botanica Malacitana, 42(2), 219–239.

    Google Scholar 

  • Medina, E., & Barboza, F. (2003). Manglares del sistema del lago Maracaibo. Caracterización fisiográfica y ecológica. Ecotropicos, 16(2), 75–82.

    Google Scholar 

  • Medina, E., & Francisco, M. (1977). Osmolality and C13 of leaf tissue of mangrove from environments of contrasting rainfall and salinity. Estuarine, Coastal and Shelf Science, 45, 337–344.

    Article  Google Scholar 

  • Mochida, Y., Fujimoto, K., Miyagy, T., Ishihara, S., Murofushi, T., Kikuchi, T., & Pramojanee, P. (1999). A Phytosociological Study of the mangrove vegetation in the Malay Peninsula. Tropics, 8(3), 207–220.

    Article  Google Scholar 

  • Moity, N., Delgado, B., & Salinas-de-León, P. (2019). Mangroves in the Galapagos islands: Distribution and dynamics. PLoS One, 14(1), 1–35.

    Google Scholar 

  • Peinado, M., Alcaraz, F., & Delgadillo, J. (1995). Syntaxonomy of some halophilous communities of North and Central America. Phytocoenologia 25(1), 23–31.

    Google Scholar 

  • Piou, C., Feller, I. F., Berger, U., & Chi, F. (2006). Zonations patterns of belizean offshore mangrove forest 41 years after a catastrophic hurricane. Biotropica, 38, 365–374.

    Article  Google Scholar 

  • Porter, D. M. (1983). Vascular plants of the Galapagos: Origins and dispersal. In R. I. Bowman, M. Berson, & A. E. Leviton (Eds.), Patterns of evolution in Galápagos organisms (pp. 33–90). San Francisco: Pacific Division, AAAS.

    Google Scholar 

  • Reyes, O. J., & Acosta, F. (2003). Fitocenósis presentes en las áreas costeras del Sur de la Sierra Maestra, Cuba I. Comunidades con influencia marina. Floresta Veracruzana, 5, 1–7.

    Google Scholar 

  • Reyes, O. J., Acosta, F. (2007). Principales fitocenosis en el humedal del delta del río Cauto, Cuba oriental. II. Herbazal halófito y manglares. Foresta Veracruzana 9(2), 1–7.

    Google Scholar 

  • Reyes Dominguez, O. J. (2006). Principales fitocenosis de manglares en el humedal del delta del rio Cauto. In L. Menéndez Carrera & J. M. Julian Menéndez (Eds.), Ecosistema de manglar en el archipiélago cubano (pp. 263–270). La Havana: Edit. Academia.

    Google Scholar 

  • Rivas-Martinez, S. (2004). Global Bioclimatics. (Clasificación Bioclimática de la Tierra). Madrid: Ed. Centro de Investigaciones Fitosociológicas.

    Google Scholar 

  • Sadooni, F. N., & El-Kassas, I. A. (1999). Mangrove as a bioindicator for environmental pollution in the coastal marine environments-review. Qatar University Science Journal 19, 137–151.

    Google Scholar 

  • Schaeffer-Novelli, Y., Cintron-Molero, G., Adaime, R. R., & de Camargo, T. M. (1990). Variability of mangrove ecosystems along the Brazilian Coast. Estuaries, 13, 204–216.

    Article  Google Scholar 

  • Semple, J. C. (1970). The distribution of pubescent leaved individual of Conocarpus erectus L. (Combretaceae). Rhodora, 72, 544–546.

    Google Scholar 

  • Sierra, R. (1999). Propuesta Preliminar de un Sistema de Clasificación de Vegetación para el Ecuador Continental. https://doi.org/10.13140/2.1.4520.9287.

  • Sobrado, M. A., & Ewe Sharon, M. L. (2006). Ecophysiological characteristics of Avicennia germinans and Laguncularia racemosa coexisting in a scrub mangrove forest at the Indian River Lagoon, Florida. Trees, 20, 679–687.

    Article  Google Scholar 

  • Stehle, H. (1945). Forest types of the Caribbean Islands. Part I. Caribbean Forester, 6(suppl. I), 273–468.

    Google Scholar 

  • Thom, B. G. (1967). Mangrove ecology and deltaic geomorphology, Tabasco, México. Journal of Ecology, 55, 301.

    Article  Google Scholar 

  • Tomlinson, P. B. (1986). The botany of mangroves. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Walter, H., & Steiner, M. (1936). Die Ökologie der OstAfrikanischen Mangroven. Zeitschrift fur Botanik, 30, 65–193.

    Google Scholar 

  • Yañez-Arancibia, A., & Lara-Dominguez, A. L. (1999). Los manglares de América Latina en la encrucijada, p. 9–16. In: A. Yáñez–Arancibia y A. L. Lara–Domínquez (eds.). Ecosistemas de Manglar en América Tropical. Instituto de Ecología A.C. México, UICN/ORMA, Costa Rica, NOAA/NMFS Silver Spring MD USA. 380 p.

    Google Scholar 

  • Zahrana, M. A., & Al-Ansari, F. M. (1999). The ecology of Al-Samaliah Island. Estuarine, Coastal and Shelf Science, 49(1), 11–19.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Herminio Boira Tortajada .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Boira Tortajada, H., García Cruzatty, L.C., Leandro Balandron, P. (2020). Mangroves Under Extreme Environmental Conditions. In: Grigore, MN. (eds) Handbook of Halophytes. Springer, Cham. https://doi.org/10.1007/978-3-030-17854-3_69-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17854-3_69-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17854-3

  • Online ISBN: 978-3-030-17854-3

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation