Monitoring of Autonomic Activity by Cardiovascular Variability: How to Measure?

  • Chapter
  • First Online:
Stress Challenges and Immunity in Space

Abstract

Cardiovascular variability in heart rate and blood pressure can be used to quantify the autonomic modulation of cardiovascular function in space and on Earth. Although the first studies were only published some 40 years ago, there is presently a vast amount of knowledge from numerous publications (a PubMed search gives 23,179 hits) that allows a better insight into the neural control mechanisms of the heart. The development of methods to measure cardiovascular variability prompted a multidisciplinary approach since many aspects are involved: mathematics, physics, signal processing, physiology, and cardiology. The current chapter briefly outlines the physiological background and the fundamental methodology used in the field of neurocardiology such as data recording, analysis in time domain, in frequency domain, and nonlinear dynamics. Finally some applications and benefits of these methods in health and disease monitoring are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ (1981) Power spectrum analysis of heart-rate fluctuation–a quantitative probe of beat-to-beat cardiovascular control. Science 213:220–222

    Article  CAS  PubMed  Google Scholar 

  • Arbeille P, Provost R, Vincent N, Aubert AE (2014) Adaptation of the main peripheral artery and vein to long term confinement (Mars 500). PLoS One 9(1):e83063. https://doi.org/10.1371/journal.pone

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aubert AE, Ramaekers D (1999) Neurocardiology: the benefits of irregularity - the basics of methodology, physiology and current clinical applications. Acta Cardiol 54:107–120

    CAS  PubMed  Google Scholar 

  • Aubert AE, Ramaekers D, Beckers F, Breem R, Denef C, Van de Werf F, Ector H (1999) The analysis of heart rate variability in unrestrained rats. Validation of method and results. Comput Methods Prog Biomed 60:197–213

    Article  CAS  Google Scholar 

  • Aubert AE, Seps B, Beckers F (2003) Heart rate variability in athletes. Sports Med 33:889–919

    Article  PubMed  Google Scholar 

  • Aubert AE, Beckers F, Verheyden B (2005) Cardiovascular function and basics of physiology in microgravity. Acta Cardiol 60(2):129–151

    Article  PubMed  Google Scholar 

  • Aubert AE, Vandeput S, Beckers F, Liu J, Verheyden B, Van Huffel S (2009) Complexity of cardiovascular regulation in small animals. Philos Transact A Math Phys Eng Sci 367:1239–1250

    Article  Google Scholar 

  • Aubert AE, Verheyden B, D’Ydewalle C, Beckers F, Van den Bergh O (2010) Effects of mental stress on autonomic cardiac modulation during weightlessness. Am J Physiol Heart Circ Physiol 298:H202–H209

    Article  CAS  PubMed  Google Scholar 

  • Aubert AE, Larina I, Momken I, Blanc S, White O, Prisk K, Linnarsson D (2016) Towards human exploration of space: the theseaus review on cardiovascular, respiratory and renal research. NPJ Microgravity 2:16031. https://doi.org/10.1038/npjmgrav.2016.31

    Article  PubMed  PubMed Central  Google Scholar 

  • Baevsky RM, Petrov VM, Cornelissen G, Halberg F, Orth-Gomer K, Akerstedt T, Otsuka K, Breus T, Siegelova J, Dusek J, Fiser B (1997) Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med (Brno) 70:201–206

    CAS  Google Scholar 

  • Baevsky RM, Petrov VM, Chernikova AG (1998) Regulation of autonomic nervous system in space and magnetic storms. Adv Space Res 22:227–234

    Article  CAS  PubMed  Google Scholar 

  • Baevsky RM, Baranov VM, Funtova II, Diedrich A, Pashenko AV, Chernikova AG, Drescher J, Jordan J, Tank J (2007) Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the international Space Station. J Appl Physiol 103:156–161

    Article  PubMed  Google Scholar 

  • Baselli G, Bolis D, Cerutti S, Freschi C (1985) Autoregressive modeling and power spectral estimate of R-R interval time series in arrhythmic patients. Comput Biomed Res 18:510–530

    Article  CAS  PubMed  Google Scholar 

  • Beckers F (2002) Linear and nonlinear analysis of cardiovascular variability. In: Validation and clinical applications (Acta Biomedica Lovaniensis). Leuven University Press, Leuven, pp 1–133. ISBN 90 5867 249 2

    Google Scholar 

  • Beckers F, Verheyden B, Aubert AE (2003a) Evolution of heart rate varibility before, during and after spaceflight. J Gravit Physiol 10:107–108

    Google Scholar 

  • Beckers F, Seps B, Ramaekers D, Verheyden B, Aubert AE (2003b) Parasympathetic heart rate modulation during parabolic flights. Eur J Appl Physiol 90:83–91

    Article  CAS  PubMed  Google Scholar 

  • Beckers F, Verheyden B, De Winne F, Duque P, Chaput D, Aubert AE (2004) HICOPS: human interface computer program in space. J Clin Monit Comput 18(2):131–136

    Article  PubMed  Google Scholar 

  • Beckers F, Verheyden B, Aubert AE (2006a) Aging and nonlinear heart rate control in a healthy population. Am J Physiol Heart Circ Physiol 290:H2560–H2570

    Article  CAS  PubMed  Google Scholar 

  • Beckers F, Verheyden B, Couckuyt K, Aubert AE (2006b) Fractal dimension in health and heart failure. Biomed Tech 51:194–197

    Article  Google Scholar 

  • Beckers F, Verheyden B, Couckuyt K, Liu J, Aubert AE (2006c) Autonomic cardiovascular modulation after spaceflight during orthostatic stress. Eur Heart J 27:190–190

    Google Scholar 

  • Beckers F, Verheyden B, Ramaekers D, Swynghedauw B, Aubert AE (2006d) Effects of autonomic blockade on non-linear cardiovascular variability indices in rats. Clin Exp Pharmacol Physiol 33:431–439

    Article  CAS  PubMed  Google Scholar 

  • Beckers F, Verheyden B, Liu J, Aubert AE (2009) Cardiovascular autonomic control after short-duration spceflights. Acta Astronaut 65:804–812

    Article  Google Scholar 

  • Bendat JS, Piersol AG (1971) Random data: analysis and measurement procedures. Wiley Interscience, New York. ISBN 0 471 0470 X

    Google Scholar 

  • Benichou T, Pereira B, Mermillod M, Tauveron I, Pfabigan D, Maqdasy S, Dutheil F (2018) Heart rate variability in type 2 diabetes mellitus: A systematic review and meta-analysis. PLoS One 13:4

    Article  CAS  Google Scholar 

  • Bogaert C, Beckers F, Ramaekers D, Aubert AE (2001) Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients. Auton Neurosci 90:142–147

    Article  CAS  PubMed  Google Scholar 

  • Chan HL, Huang HH, Lin JL (2001) Time-frequency analysis of heart rate variability during transient segments. Ann Biomed Eng 29:983–996

    Article  CAS  PubMed  Google Scholar 

  • Cohen MA, Taylor JA (2002) Short-term cardiovascular oscillations in man: measuring and modelling the physiologies. J Physiol 542:669–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Copie X, Le Heuzey JY, Iliou MC, Khouri R, Lavergne T, Pousset F, Guize L (1996) Correlation between time-domain measures of heart rate variability and scatterplots in postinfarction patients. Pacing Clin Electrophysiol 19:342–347

    Article  CAS  PubMed  Google Scholar 

  • Dabire H, Mestivier D, Jarnet J, Safar ME, Chau NP (1998) Quantification of sympathetic and parasympathetic tones by nonlinear indexes in normotensive rats. Am J Physiol Heart Circ Physiol 44:H1290–H1297

    Article  Google Scholar 

  • Donaldson K, Duffin R, Langrish JP, Miller MR, Mills NL, Poland CA, Raftis J, Shah A, Shaw CA, Newby DE (2013) Nanoparticles and the cardiovascular system: a critical review. Nanomedicine (Lond) 8(3):403–423. https://doi.org/10.2217/nnm.13.16. Review

    Article  CAS  Google Scholar 

  • Eckberg DL (1997) Sympathovagal balance - a critical appraisal. Circulation 96:3224–3232

    Article  CAS  PubMed  Google Scholar 

  • Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Physica D 9:189–208

    Article  Google Scholar 

  • Guyton AC, Hall JE, Lohmeier TE, Jackson TE, Kastner PR (1981) Blood pressure regulation: basic concepts. Fed Proc 40:2252–2256

    CAS  PubMed  Google Scholar 

  • Holland A, Aboy M (2009) A novel recursive Fourier transform for nonuniform sampled signals: application to heart rate variability spectrum estimation. Med Biol Eng Comput 47(7):697–707

    Article  PubMed  Google Scholar 

  • Huikuri HV, Perkiömäki JS, Maestri R, Pinna GD (2009) Clinical impact of evaluation of cardiovascular control by novel methods of heart rate dynamics. Philos Trans A Math Phys Eng Sci 367:1223–1238

    Article  PubMed  Google Scholar 

  • Hyndman BW (1974) The role of rhythms in homeostasis. Kybernetik 15:227–236

    CAS  PubMed  Google Scholar 

  • Hyndman BW, Kitney RI, Sayers BM (1971) Spontaneous rhythms in physiological control systems. Nature 233:339–341

    Article  CAS  PubMed  Google Scholar 

  • Imholz BPM, Wieling W, van Montfrans GA, Wesseling KH (1998) Fifteen years experience with finger arterial pressure monitoring: assessment of the technology. Cardiovasc Res 38:605–616

    Article  CAS  PubMed  Google Scholar 

  • Kleiger R, Miller J, Bigger JT Jr, Moss A (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:266–262

    Article  Google Scholar 

  • Kleiger RE, Bigger JT, Bosner MS, Chung MK, Cook JR, Rolnitzky LM, Steinman R, Fleiss JL (1991) Stability over time of variables measuring heart rate variability in normal subjects. Am J Cardiol 68:626–630

    Article  CAS  PubMed  Google Scholar 

  • Kochiadakis GE, Orfanakis AE, Rombola AT, Chrysostomakis SI, Chlouverakis GI, Vardas PE (1997) Reproducibility of time-domain indexes of heart rate variability in patients with vasovagal syncope. Am J Cardiol 79:160–165

    Article  CAS  PubMed  Google Scholar 

  • Lees T, Shad-Kaneez F, Simpson AM, Nassif NT, Lin Y, Lal S (2018) Heart rate variability as a biomarker for predicting stroke, post-stroke complications and functionality. Biomark Insights 13:1177271918786931

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Li Y, Verheyden B, Liu X, Chen Z, Chen S, Aubert AE (2009) Cardiovascular control during 60 days head-down bed rest: Chinese herbal medicine as a countermeasure. Space Med Med Eng 22:391–398

    Google Scholar 

  • Liu J, Verheyden B, Beckers F, Aubert AE (2012) Hemodynamic adaptation during sudden gravity transitions. Eur J Appl Physiol 117:79–89

    Article  Google Scholar 

  • Liu J, Li Y, Verheyden B, Chen S, Chen Z, Gai Y, Liu J, Gao J, ** Q, Yuan M, Lin Q, Aubert AE (2015) Is autonomic modulation different between European and Chinese astronauts? PLoS One 10(3):e0120920. DOI:10.13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lombardi F (2000) Chaos theory, heart rate variability, and arrhythmic mortality. Circulation 101:8–10

    Article  CAS  PubMed  Google Scholar 

  • Malik M, Camm AJ (1995) Heart rate variability. Futura Publ Co, Armonk, pp 1–543. ISBN 0 87993 607 X

    Google Scholar 

  • Malliani A (2000) Principles for cardiovascular neural regulation in health and disease. Kluwer Academic Publishers, Boston, pp 1–222. ISBN 0-7923-7775-3

    Book  Google Scholar 

  • Malliani A, Pagani M, Lombardi F, Cerutti S (1991) Cardiovascular neural regulation explored in the frequency-domain. Circulation 84:482–492

    Article  CAS  PubMed  Google Scholar 

  • Mansier P, Clairambault J, Charlotte N, Medigue C, Vermeiren C, LePape G, Carre F, Gounaropoulou A, Swynghedauw B (1996) Linear and non-linear analyses of heart rate variability: a mini review. Cardiovasc Res 31:371–379

    Article  CAS  PubMed  Google Scholar 

  • Manzey D (2004) Human missions to Mars: new psychological challenges and research issues. Acta Astronaut 55(3–9):781–790

    Article  PubMed  Google Scholar 

  • McIntosh RC (2016) A meta-analysis of HIV and heart rate variability in the era of antiretroviral therapy. Clin Auton Res 26(4):287–294

    Article  PubMed  Google Scholar 

  • Miwa C, Sugiyama Y, Mano T, Iwase S, Matsukawa T (1997) Sympatho-vagal responses in humans to thermoneutral head-out water immersion. Aviat Space Environ Med 68:1109–1114

    CAS  PubMed  Google Scholar 

  • Novak V, Novak P, Dechamplain J, Leblanc AR, Martin R, Nadeau R (1993) Influence of respiration on heart-rate and blood-pressure fluctuations. J Appl Physiol 74:617–626

    Article  CAS  PubMed  Google Scholar 

  • Pavy-Le TA, Heer M, Narici MV, Rittweger J, Vernikos J (2007) From space to earth: advances in human physiology from 20 years of bed rest studies (1986–2006). Eur J Appl Physiol 101:143–194

    Article  Google Scholar 

  • Pinna GD, Maestri R, Di CA, Colombo R, Minuco G (1994) The accuracy of power-spectrum analysis of heart-rate variability from annotated RR lists generated by Holter systems. Physiol Meas 15:163–179

    Article  CAS  PubMed  Google Scholar 

  • Pinna GD, Maestri R, Di CA (1996) Application of time series spectral analysis theory: analysis of cardiovascular variability signals. Med Biol Eng Comput 34:142–148

    Article  CAS  PubMed  Google Scholar 

  • Raab C, Wessel N, Schirdewan A, Kurths J (2006) Large-scale dimension densities for heart rate variability analysis. Phys Rev E Stat Nonlinear Soft Matter Phys 73(4 Pt 1):041907. Epub 2006 Apr 10

    Article  CAS  Google Scholar 

  • Ramaekers D, Ector H, Aubert AE, Rubens A, Van de Werf F (1998) Heart rate variability and heart rate in healthy volunteers - is the female autonomic nervous system cardioprotective? Eur Heart J 19:1334–1341

    Article  CAS  PubMed  Google Scholar 

  • Ramaekers D, Beckers F, Demeulemeester H, Aubert AE (2002) Cardiovascular autonomic function in conscious rats: a novel approach to facilitate stationary conditions. Ann Noninvasive Electrocardiol 7:307–318

    Article  PubMed  Google Scholar 

  • Sayers BM (1973) Analysis of heart rate variability. Ergonomics 16:17–32

    Article  CAS  PubMed  Google Scholar 

  • Shie Q, Dapang C (1996) Joint time-frequency analysis. Prentice Hall, Upper Saddle River. ISBN 0 13 254384 2

    Google Scholar 

  • da Silva TD, Massetti T, Crocetta TB, de Mello Monteiro CB, Carll A, Vanderlei LCM, Arbaugh C, Oliveira FR, de Abreu LC, Ferreira Filho C, Godleski J, Ferreira C (2018) Heart rate variability and cardiopulmonary dysfunction in patients with duchenne muscular dystrophy: a systematic review. Pediatr Cardiol 39(5):869–883

    Article  PubMed  Google Scholar 

  • Task force (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Eur Heart J 17:354–381

    Article  Google Scholar 

  • Toska K, Eriksen M (1993) Respiration-synchronous fluctuations in stroke volume, heart rate and arterial pressure in humans. J Physiol 472:501–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umetani K, Singer DH, McCraty R, Atkinson M (1998) Twenty-four hour time domain heart rate variability and heart rate: relations to age and gender over nine decades. J Am Coll Cardiol 31:593–601

    Article  CAS  PubMed  Google Scholar 

  • Verheyden B (2007) Cardiovascular control in space and on earth: the challenge of gravity (Acta Biomedica Lovaniensia). Leuven University Press, Leuven, pp 1–152. ISBN 978 90 5867 618 4

    Google Scholar 

  • Verheyden B, Beckers F, Aubert AE (2005) Spectral characteristics of heart rate fluctuations during parabolic flight. Eur J Appl Physiol 95:557–568

    Article  PubMed  Google Scholar 

  • Verheyden B, Beckers F, Couckuyt K, Liu J, Aubert AE (2007) Respiratory modulation of cardiovascular rhythms before and after short-duration human spaceflight. Acta Physiol (Oxf) 191:297–308

    Article  CAS  Google Scholar 

  • Verheyden B, Liu J, Beckers F, Aubert AE (2009) Adaptation of heart rate and blood pressure to short and long duration space missions. Respir Physiol Neurobiol 169S:S13–S19

    Article  Google Scholar 

  • Verheyden B, Liu J, Beckers F, Aubert AE (2010) Operational point of neural cardiovascular regulation in humans up to 6 months in space. J Appl Physiol 108:646–654

    Article  CAS  PubMed  Google Scholar 

  • Verlinde D, Beckers F, Ramaekers D, Aubert AE (2001) Wavelet decomposition analysis of heart rate variability in aerobic athletes. Auton Neurosci 90(1–2):138–141

    Article  CAS  PubMed  Google Scholar 

  • Vigo D, Tuerlinckx F, Ogrinz B, Li W, Simonelli G, Bersenev E, Van den Bergh O, Aubert AE (2013) Circadian rhythm of autonomic cardiovascular control during Mars500 simulated mission to Mars. Aviat Space Environ Med 84(10):1023–1028

    Article  PubMed  Google Scholar 

  • Yamamoto Y, Hughson RL (1991) Coarse-graining spectral-analysis – new method for studying heart-rate-variability. J Appl Physiol 71:1143–1150

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André E. Aubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aubert, A.E., Verheyden, B. (2020). Monitoring of Autonomic Activity by Cardiovascular Variability: How to Measure?. In: Choukèr, A. (eds) Stress Challenges and Immunity in Space. Springer, Cham. https://doi.org/10.1007/978-3-030-16996-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16996-1_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16995-4

  • Online ISBN: 978-3-030-16996-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation