Nanotechnology and Nanobiotechnology for Environmental Remediation

  • Chapter
  • First Online:
Magnetic Nanostructures

Part of the book series: Nanotechnology in the Life Sciences ((NALIS))

Abstract

Environmental contamination is one of the important issues that the world is confronting today, and it is expanding with each passing year and leading to the grave and harmful effect to the earth. At present, the air, water, and soil are contaminated with organic and inorganic pollutants. In parallel, the rapid growth of nanotechnology has gained a great deal of interest in the applications of nanomaterial’s potential in improved systems for monitoring and cleanup including all the three phases of the environment. It can develop the pollutants sensing and detection and help in the improvement of novel remediation technologies. In this chapter, we discuss the recent progress toward the use of nanotechnology and nanobiotechnology in a variety of abovementioned applications. Furthermore, we expand upon the current progress in nanomaterial engineering approaches describing several recent examples that are utilized to enhance stability, catalytic efficiency, and utilization of alternate oxidants. The chapter will provide a comprehensive knowledge in the definition of nanoparticles, the nanotechnology and the nanobiotechnology concept, and design of nanomaterial for potentially practical purposes. Finally, we provide a perspective on the future aspects of nanotechnology and its applications in air pollution remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adeleye AS, Conway JR, Garner K, Huang Y, Su Y, Kell AA (2016) Engineered nanomaterials for water treatment and remediation: costs, benefits, and applicability. Chem Eng J 286:640–662

    Article  CAS  Google Scholar 

  • Akbari E, Zolkafle B, Aria E, Seyed JM, Mahdi B, Ali S, Ali N (2014) An analytical model and ANN simulation for carbon nanotube based ammonium gas sensors. RSC Adv 4:36896–36904

    Article  CAS  Google Scholar 

  • Amade R, Hussain S, Ocana IR, Bertran E (2014) Growth and functionalization of carbon nanotubes on quartz filter for environmental applications. J Environ Eng Ecol Sci 3:1–7

    Article  CAS  Google Scholar 

  • Andriantsiferana C, Mohamed EF, Delmas H (2015) Sequential adsorption photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon. Environ Eng Res 20:181–189

    Article  Google Scholar 

  • Azama MA, Aliasa FM, Tacka LW, Amalina RN, Mohamad RS, Taibb FM (2017) Electronic properties and gas adsorption behaviour of pristine, silicon, and boron-doped (8, 0) single-walled carbon nanotube: a first principles study. J Mol Graph Model 75:85–93

    Article  CAS  Google Scholar 

  • Baltrusaitis J, Jayaweera PM, Grassian VH (2011) Sulfur dioxide adsorption on TiO2 nanoparticles: influence of particle size, coadsorbates, sample pretreatment, and light on surface speciation and surface coverage. J Phys Chem 115:492–500

    CAS  Google Scholar 

  • Bergmann CP, Machado F (2015) Carbon nanomaterials as adsorbents for environmental and biological applications. Carbon nanostructures (Paulo Araujo, Tuscaloosa, AL, USA), Library of Congress, Springer Cham Heidelberg, New York, Dordrecht, London, Springer International Publishing, Switzerland, pp 1–126

    Google Scholar 

  • Bhargava A, Jain N, Gangopadhyay S, Panwar J (2015) Development of gold nanoparticle-fungal hybrid based heterogeneous interface for catalytic applications. Process Biochem 50:1293–1300

    Article  CAS  Google Scholar 

  • Bhawana P, Fulekar MH (2012) Nanotechnology: remediation technologies to clean up the environmental pollutants. Res J Chem Sci 2(2):90–96

    Google Scholar 

  • Chen Y et al (2011) Electronic detection of lectins using carbohydratefunctionalized nanostructures: graphene versus carbon nanotubes. ACS Nano 6:760–770

    Google Scholar 

  • Chuaybamroong P, Chotigawin R, Supothina S, Sribenjalux P, Larpkiattaworn S, Wu CY (2010) Efficacy of photocatalytic HEPA filter on microorganism removal. Indoor Air 20:246–254

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Li Q, Gao S, Shang JK (2012) Strong adsorption of arsenic species by amorphous zirconium oxide nanoparticles. J Ind Eng Chem 18:1418–1427

    Google Scholar 

  • Darezereshki E, Khodadadi A, Mahmoud D, Abdollahy A, Jamshidi Z (2018) Influence of heavy metals on the adsorption of arsenate by magnetite nanoparticles: kinetics and thermodynamic. Environ Nanotechnol Monit Manag 10:51–62

    Google Scholar 

  • Dong F, Zhang M, Huang W, Zhou L, Wong MS, Wang Y (2015) Superhydrophobic/ hydrophobic nanofibrous network with tunable cell adhesion: fabrication, characterization and cellular activities. Colloids Surf A: Physicochem Eng Aspects 482:718–723

    Article  CAS  Google Scholar 

  • Esrafili M D (2017) N2O reduction over a fullerene-like boron nitride nanocage: A DFT study. Physics Letters A 381:2085–2091

    Google Scholar 

  • Essawy HA, El-Shakour AA, Tawfik ME, Mohamed EF, El-Sabbagh SH, El-Hashemy MA (2014) Composite membranes derived from immiscible NBR/SBR blends and amphiphilic montmorillonites: permeability evaluation of these membranes for benzene and toluene in their binary mixtures. RSC Adv 4:33555–33563

    Article  CAS  Google Scholar 

  • Gupta VK, Saleh TA (2013) Sorption of pollutants by porous carbon, carbon nanotubes and fullerene − an overview. Environ Sci Pollut Res 20:2828–2843

    Article  CAS  Google Scholar 

  • Haghighi Pak Z, Abbaspour H, Karimi N, Fattahi A (2016) Eco-friendly synthesis and antimicrobial activity of silver nanoparticles using Dracocephalum moldavica seed extract. Appl Sci 6(69):1–10

    Google Scholar 

  • Haseley SR (2002) Carbohydrate recognition: a nascent technology for the detection of bioanalytes. Anal Chim Acta 457:39–45

    Article  CAS  Google Scholar 

  • Hsu S, Lu C (2007) Modification of single-walled carbon nanotubes for enhancing isopropyl alcohol vapor adsorption from water streams. Separat Sci Technol 42: 2751–2766

    Article  CAS  Google Scholar 

  • Hussain Z, Ameer AA, Ahmed A, Mudhaffar Abdullah B, Yousif E (2015) Nanotitanium dioxide as photocatalytic degradation of pollutants. J Chem Pharm Res 7:522–530

    CAS  Google Scholar 

  • Jiang B, Lian L, **ng Y, Zhang N, Chen Y, Lu P, Zhang D (2018) Advances of magnetic nanoparticles in environmental application: environmental remediation and (bio) sensors as case studies. Environ Sci Pollut Res Int 25:30863–30879

    Article  CAS  PubMed  Google Scholar 

  • Kalele SA, Kundu AA, Gosavi SW, Deobagkar DN, Deobagkar DD, Kulkarni SK (2006) Rapid detection of escherichia coli by using antibody-conjugated silver nanoshells. Small 2:335–338

    Google Scholar 

  • Khan I, Farhan M, Singh P, Thiagarajan P (2014) Nanotechnology for environmental remediation. Res J Pharm Biol Chem Sci 5(3):1916–1927

    Google Scholar 

  • Kim J, Choi S-W, Lee J-H, Chung Y, Byun YT (2016) Gas sensing properties of defect-induced single-walled carbon nanotubes. Sen Actuator B-Chem 228:688–692

    Article  CAS  Google Scholar 

  • Komkovis VG, Marti M, Delimitis A, Vasalos IA, Triantafyllidis KS (2011) Catalytic decomposition of N2O over highly active supported Ru nanoparticles prepared by chemical reduction with ethylene glycol. Appl Catal B 103:62–71

    Article  CAS  Google Scholar 

  • Krejcova L, Michalek P, Rodrigo MM, Heger Z, Krizkova S, Vaculovicova M, Hynek D, Adam V, Kizek R (2015) Nanoscale virus biosensors: state of the art. Nanobiosensors Dis Diagn 4:47–66

    Google Scholar 

  • Krug HF (2009) Book review nanotechnology, volume 2: environmental aspects, chapter 9: epidemiological studies on particulate air pollution. Environ Eng Manag J 8(1):191–194

    Google Scholar 

  • Le S, Trong HD, Dinh N, Hoai CN, Balikhin IL (2015) Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO2 photocatalyst for use in hospitals. Adv Nat Sci: Nanosci Nanotechnol 6:1–8

    Google Scholar 

  • Lee B, Jung JH, Bae GN (2010) Effect of relative humidity and variation of particle number size distribution on the inactivation effectiveness of airborne silver nanoparticles against bacteria bioaerosols deposited on a filter. J Aerosol Sci 41:447–456

    Article  CAS  Google Scholar 

  • Li T, Shi L, Wang E, Dong S (2009) Multifunctional G-quadruplex aptamers and their application to protein detection. Chem Eur J 15:1036–1042

    Google Scholar 

  • Long RQ, Yang RT (2001) Carbon nanotubes as a superior sorbent for removal dioxine. J Amer Chem Soc 123:2058–2059

    Article  CAS  Google Scholar 

  • Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392(15):658–668

    Article  CAS  Google Scholar 

  • Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environnemental pollution and nanotechnology. Environ Pollut 2(2):49–58

    Article  CAS  Google Scholar 

  • Misson M, Zhang H, ** B (2015) Nanobiocatalyst advancements and bioprocessing applications. J R Soc Interface 12(102):20140891

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mohamed EF (2017) Nanotechnology: future of environmental air pollution control. Environ Manag Sustain Dev 6:429–454

    Article  Google Scholar 

  • Mohamed EF, El-Hashemy MA, Abdel-Latif NM, Shetaya WH (2015) Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber. J Air Waste Manag Assoc 65:1413–1420

    Article  CAS  PubMed  Google Scholar 

  • Mohamed EF, Sayed Ahmed SA, Abdel-Latif NM, Mekawy A (2016a) Air purifier devices based on adsorbents produced from valorization of different environmental hazardous materials for ammonia gas control. RSC Adv 6:57284–57292

    Article  CAS  Google Scholar 

  • Mohamed EF, Awad G, Andriantsiferana C, El-Diwany A (2016b) Biofiltration technology for the removal of toluene from polluted air using Streptomyces griseus. Environ Technol 37(10):1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK (2016) Nanomaterials: materials with immense potential. J Appl Chem 5:714–7181

    CAS  Google Scholar 

  • Nguyen C-C, Vu N-N, Do T-O (2016) Efficient hollow double-shell photocatalysts for the degradation of organic pollutants under visible light and in darkness. J Mater Chem A 4:4413–4419

    Article  CAS  Google Scholar 

  • Özkar S (2009) Enhancement of catalytic activity by increasing surface area in heterogeneous catalysis. Appl Surf Sci 256(5):1272–1277

    Article  CAS  Google Scholar 

  • Petit C, Bandosz T J (2009) MOF–graphite oxide nanocomposites: surface characterization and evaluation as adsorbents of ammonia. J Mater Chem 19 (36):6521–6528

    Google Scholar 

  • Portela R, Tessinari RF, Suarez S, Rasmussen SB, Alonso MDH, Canela MC, Avila P, Sanchez B (2012) Photocatalysis for continuous air purification in wastewater treatment plants: from lab to reality. Environ Sci Technol 46:5040–5048

    Article  CAS  PubMed  Google Scholar 

  • Ren X, Chen C, Nagatsu M, Wang X (2011) Carbon nanotubes as adsorbents in environmental pollution management: a review. Chem Eng J 170:395–410

    Article  CAS  Google Scholar 

  • Ren X, Li J, Tan X, Wang X (2013) Comparative study of graphene oxide, activated carbon and carbon nanotubes as adsorbents for copper decontamination. Dalton Trans 42:5266–5274

    Article  CAS  PubMed  Google Scholar 

  • Roso M, Sundarrajan S, Pliszka D, Ramakrishna S, Modesti M (2008) Multifunctional membranes based on spinning technologies: the synergy of nanofibers and nanoparticles. Nanotechnology 19:285–707

    Article  CAS  Google Scholar 

  • Shen W, Zhang C, Li Q, Zhang W, Cao L, Ye J (2015) Preparation of titanium dioxide nanoparticle modified photocatalytic self-cleaning concrete. J Clean Prod 87:762–765

    Article  CAS  Google Scholar 

  • Seredych M, Bandosz T J (2012) Manganese oxide and graphite oxide/MnO2 composites as reactive adsorbents of ammonia at ambient conditions. Microporous and Mesoporous Mater 150:55–63

    Google Scholar 

  • Shintani H, Kurosu S, Miki A, Hayashi F, Kato S (2006) Sterilization efficiency of the photocatalyst against environmental microorganisms in a health care facility. Biocontrol Sci 11:17–26

    Article  PubMed  Google Scholar 

  • Singh SB, Tandon PK (2014) Catalysis: a brief review on nano-catalyst. J Energy Chem Eng 2(3):106–115

    Google Scholar 

  • So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK et al (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field effect transistors. Small 4:197–201

    Article  CAS  PubMed  Google Scholar 

  • Srisitthiratkul C, Pongsorrarith V, Intasanta N (2011) The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties. Appl Surf Sci 257:8850–8856

    Article  CAS  Google Scholar 

  • Stark WJ, Stoessel PR, Wohlleben W, Hafner A (2015) Industrial applications of nanoparticles. Chem Soc Rev 44:5793–5805

    Article  CAS  PubMed  Google Scholar 

  • Su F, Lu C, CnenW, Bai H, Hwang JF (2009) Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci Total Environ 407:3017–3023

    Google Scholar 

  • Subramanian KS, Tarafdar JC (2011) Prospects of nanotechnology in Indian farming. Indian J Agric Sci 81(10):887–893

    CAS  Google Scholar 

  • Sugunakala S, Krishnaveni K, Neela R (2017) Applications of nanotechnology in water and air pollution treatment. Int J Innov Res Adv Eng 4:2349–2163

    Google Scholar 

  • Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42:8400–8407

    Article  CAS  Google Scholar 

  • Sundarrajan S, Pliszka D, Ramakrishna S, Jaworek A, Krupa A, Lackowski M (2009) A novel process for the fabrication of nanocomposites membranes. J Nanosci Nanotechnol 9:4442–4447

    Article  CAS  PubMed  Google Scholar 

  • Sung WP, Tsai TT, Wu MJ, Wang HJ, Surampalli RY (2011) Removal of indoor airborne bacteria by nano-Ag/TiO2 as photocatalyst: feasibility study in museum and nursing institutions. J Environ Eng 137:163–170

    Article  CAS  Google Scholar 

  • Tartaj P, Morales MDD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197

    Article  CAS  Google Scholar 

  • Vikesland PJ, Wigginton KR (2010) Nanomaterial enabled biosensors for pathogen monitoring − a review. Environ Sci Technol 44(10):3656–3669

    Article  CAS  PubMed  Google Scholar 

  • Volkert AA, Haes AJ (2014) Advancements in nanosensors using plastic antibodies. Analyst 139(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Luo J, Maye MM, Fan Q, Rendeng Q, Engelhard MH, Wang C, Lin Y, Zhong CJ (2005) Iron oxide-gold core-shell nanoparticles and thin film assembly. J Mater Chem 15:1821–1832

    Article  CAS  Google Scholar 

  • Wu S, He Q, Tan C, Wang Y, Zhang H (2013) Graphene-based electrochemical sensors. Small 9:1160–1172.

    Google Scholar 

  • Yadav KK, Singh JK, Gupta N, Kumar V (2017) A review of nanobioremediation technologies for environmental cleanup: a novel biological approach. J Mater Environ Sci 8(2):740–757

    CAS  Google Scholar 

  • Yang X, Shen Z, Zhang B, Yang J, Hong WX, Zhuang Z, Liu J (2013) Silica nanoparticles capture atmospheric lead: implications in the treatment of environmental heavy metal pollution. Chemosphere 90:653–656

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Guo Y, Yue Y, Zhang Y (2015) Facile colorimetric detection of nitrite based on anti-aggregation of gold nanoparticles. Anal Methods 7:4090–4096

    Article  CAS  Google Scholar 

  • Yildiz O, Bradford PD (2013) Aligned carbon nanotube sheet high efficiency particulate air filters. Carbon 64:295–304

    Article  CAS  Google Scholar 

  • Zaleska A (2008) Doped-TiO2: a review. Recent Pat Eng 2:157–164

    Article  CAS  Google Scholar 

  • Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2(4):95–105

    Article  Google Scholar 

  • Zhang X, Qu Z, Li XY, Zhao Q, Wang Y, Quan X (2011) Low temperature CO oxidation over Ag/SBA-15 nanocomposites prepared via in-situ “pH-adjusting” method. Catal Commun 16:11–14

    Article  CAS  Google Scholar 

  • Zhang C, Sui J, Li J, Tang Y, Cai W (2012) Efficient removal of heavy metal ions by thiol-functionalized superparamagnetic carbon nanotubes. Chem Eng J 210:45–52

    Article  CAS  Google Scholar 

  • Zhang Y, Yuan S, Feng X, Li H, Zhou J, Wang B (2016) Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. J Am Chem Soc 138:5785–5788

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yang X (2003) Photocatalytic oxidation for indoor air purification: a literature review. Build Environ 38:645–654

    Article  Google Scholar 

  • Zhou R, Hu G, Yu R, Pan C, Wang ZL (2015) Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors. Nano Energy 12:588–559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mohamed, E.F., Awad, G. (2019). Nanotechnology and Nanobiotechnology for Environmental Remediation. In: Abd-Elsalam, K., Mohamed, M., Prasad, R. (eds) Magnetic Nanostructures . Nanotechnology in the Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-16439-3_5

Download citation

Publish with us

Policies and ethics

Navigation